精英家教网 > 高中数学 > 题目详情
已知数列{an}的通项为an=log(n+1)(n+2)  (n∈N*),我们把使乘积a1?a2?a3…an为整数的n叫做“优数”,则在(1,2012]内的所有“优数”的和为(  )
A、1024B、2012C、2026D、2036
分析:由题意求出a1•a2…an=log2(n+2),若使log2(n+2)为整数,则n+2=2k,在(1,2012]内的所有整数可求,进而利用等比数列的求和公式可求.
解答:解:∵an=logn+1(n+2)
∴a1•a2…an=log23•log34…logn+1(n+2)
=
lg3
lg2
lg4
lg3
lg5
lg4
lg(n+2)
lg(n+1)

=
lg(n+2)
lg2

=log2(n+2)
若使log2(n+2)为整数,则n+2=2k
在(1,2012]内的所有整数分别为:22-2,23-2,…,210-2
∴所求的数的和为22-2+23-2+…+210-2=
4(1-29)
1-2
=2026.
故选:C.
点评:本题主要考查了对数的换底公式及对数的运算性质的应用,新定义形式的考查是近几年高考的重要题型,属于中档试题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的通项为an=2n-1,Sn为数列{an}的前n项和,令bn=
1
Sn+n
,则数列{bn}的前n项和的取值范围为(  )
A、[
1
2
,1)
B、(
1
2
,1)
C、[
1
2
3
4
)
D、[
2
3
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式是an=
an
bn+1
,其中a、b均为正常数,那么数列{an}的单调性为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•东城区二模)已知数列{an}的通项公式是 an=
na
(n+1)b
,其中a、b均为正常数,那么 an与 an+1的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=2n-5,则|a1|+|a2|+…+|a10|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=
1
n+1
+
n
求它的前n项的和.

查看答案和解析>>

同步练习册答案