设
,点P(
,0)是函数
的图象的一个公共点,两函数的图象在点P处有相同的切线.
(Ⅰ)用
表示a,b,c;
(Ⅱ)若函数
在(-1,3)上单调递减,求
的取值范围.
(I)
,
,
(II)![]()
【解析】
试题分析:(I)因为函数
,
的图象都过点(
,0),所以
,
即
.因为
所以
.![]()
又因为
,
在点(
,0)处有相同的切线,所以![]()
而![]()
将
代入上式得
因此
故
,
,![]()
(II)解法一
.
当
时,函数
单调递减.
由
,若
;若![]()
由题意,函数
在(-1,3)上单调递减,则
所以![]()
又当
时,函数
在(-1,3)上单调递减.
所以
的取值范围为![]()
解法二:![]()
因为函数
在(-1,3)上单调递减,且
是(-1,3)
上的抛物线,
所以
即
解得![]()
所以
的取值范围为![]()
考点:本题主要考查导数的几何意义,研究函数的单调性,求函数的极值,不等式组解法。
点评:综合题,以函数为载体,通过应用导数知识,对函数极值、两曲线的位置关系、不等式的解法等,进行了全面考查。
科目:高中数学 来源: 题型:
(05年湖南卷文)(14分)
设
,点P(
,0)是函数
的图象的一个公共点,两函数的图象在点P处有相同的切线.
(Ⅰ)用
表示a,b,c;
(Ⅱ)若函数
在(-1,3)上单调递减,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年辽宁省丹东市高三上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分12分)
设
,点P(
,0)是函数
的图象的一个公共点,两函数的图象在点P处有相同的切线.
(1)用
表示a,b,c;
(2)若函数
在(-1,3)上单调递减,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
设
,点P(
,0)是函数
的图象的一个公共点,两函数的图象在点P处有相同的切线.
(Ⅰ)用
表示a,b,c;
(Ⅱ)若函数
在(-1,3)上单调递减,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com