精英家教网 > 高中数学 > 题目详情
在正三棱锥A-BCD中,E、F分别为棱AB、CD的中点,设EF与AC所成角为α,EF与BD所成角为β,则α+β等于( )
A.
B.
C.
D.
【答案】分析:取AD的中点G,连结EG、FG,取BD的中点H,连结AH、CH.由线面垂直的判定与性质,证出BD⊥AC.由三角形中位线定理,得到∠EGF就是异面直线AC、BD所成的角,即∠EGF=.且∠EFG和∠FEG分别等于EF与ACBD所成角,由此在Rt△EFG中算出∠EFG+∠FEG=,即得得α+β的值.
解答:解:取AD的中点G,连结EG、FG,取BD的中点H,连结AH、CH
∵AD是等腰△ABD与等腰△BCD公共的底面,H为BD中点
∴AH⊥BD且CH⊥BD
∵AH、CH是平面ACH内的相交直线
∴BD⊥平面ACH,可得BD⊥AC
∵EG是△ABD的中位线,
∴EG∥BD,同理可得FG∥AC
因此,得到∠EGF就是异面直线AC、BD所成的角,即∠EGF=
∵EF与AC所成角为α=∠EFG,EF与BD所成角为β=∠FEG
∴Rt△EFG中,∠EFG+∠FEG=,可得α+β=
故选:D
点评:本题在三棱锥中求异面直线所成的角,着重考查了正棱锥的性质、线面垂直的判定与性质和异面直线所成角的求法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在正三棱锥A-BCD中,E、F是AB、BC的中点,EF⊥DE,若BC=a,则正三棱锥A-BCD的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥A-BCD中,E,F分别是AB,BC的中点,EF⊥DE且BC=
2
,若此正三棱锥的四个顶点都在球O的面上,则球O的体积是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱锥A-BCD中,底面正三角形BCD的边长为2,点E是AB的中点,AC⊥DE,则正三棱锥A-BCD的体积是
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥A-BCD中,E、F分别为棱AB、CD的中点,设EF与AC所成角为α,EF与BD所成角为β,则α+β等于
π
2
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在正三棱锥A-BCD中,E,F分别为BD,AD的中点,EF⊥CF,则直线BD与平面ACD所成的角为
 

查看答案和解析>>

同步练习册答案