精英家教网 > 高中数学 > 题目详情
已知函数
(1)求函数上的最小值;
(2)对一切恒成立,求实数的取值范围.
(1); (2)

试题分析:(1)先将所给进行化简,然后对其进行求导,令导数等于零求出函数的零点,利用已知的范围和零点的大小进行分类讨论,结合函数的单调性与导数的正负的关系,可以在各自情况下求出函数的最小值,最后用分段函数的形式表示出来; (2)根据题意将所给函数代入化简并参数分离可得,可令一个新函数故而转化为求函数的最小值,结合函数的特征运用导数不难求出它的最小值,即可求出的范围,最后由含有绝对值的不等式求出的范围.
试题解析:(1)当在区间时,,所以,当单调递减;当时,单调递增,又
所以当,即时,;当时,在区间时是递增的,,故; (2)由可得,则,设,则递增; 递减,,故所求的范围
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若在区间单调递增,求的最小值;
(2)若,对,使成立,求的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数 
(1)当时,求的单调区间;
(2)若当恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c为常数.
(1)试确定a,b的值;
(2)讨论函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)当时,恒成立,求实数的取值范围;
(Ⅱ)若对一切恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数).
(1)求的单调区间;
⑵如果是曲线上的任意一点,若以为切点的切线的斜率恒成立,求实数的最小值;
⑶讨论关于的方程的实根情况.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数在区间上恰有一个零点,则实数的取值范围是_____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,若过点且与曲线相切的切线方程为,则实数的值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数,若的值为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案