精英家教网 > 高中数学 > 题目详情
17.判断下列各组中的两个函数是同一函数的为(  )
A.${y_1}=\frac{(x+3)(x-5)}{x+3},{y_2}=x-5$B.y1=$\sqrt{x+1}$•$\sqrt{x-1}$,y2=$\sqrt{(x+1)(x-1)}$
C.y1=x,y2=$\sqrt{{x}^{2}}$D.y1=$\root{3}{{x}^{4}-{x}^{3}}$,y2=$x\root{3}{x-1}$

分析 根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数.

解答 解:对于A,函数y1=$\frac{(x+3)(x-5)}{x+3}$=x-5(x≠-3),与y2=x-5(x∈R)的定义域不同,所以不是同一函数;
对于B,函数y1=$\sqrt{x+1}$•$\sqrt{x-1}$=$\sqrt{(x+1)(x-1)}$(x≥1),与y2=$\sqrt{(x+1)(x-1)}$(x≤-1或x≥1)的定义域不同,所以不是同一函数;
对于C,函数y1=x(x∈R),与y2=$\sqrt{{x}^{2}}$=|x|(x∈R)的对应关系不同,所以不是同一函数;
对于D,函数y1=$\root{3}{{x}^{4}{-x}^{3}}$=x$\root{3}{x-1}$(x∈R),与y2=x$\root{3}{x-1}$(x∈R)的定义域相同,对应关系也相同,所以是同一函数.
故选:D.

点评 本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.方程kx2+4y2=4k表示焦点在x轴的椭圆,则实数k的取值范围是(  )
A.k>4B.k=4C.k<4D.0<k<4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线x+y-2=0与直线x-y+3=0的位置关系是(  )
A.平行B.垂直C.相交但不垂直D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知ab≠0,点M(a,b)是圆x2+y2=r2内一点,直线l的方程是ax+by=r2,则下列结论正确的是(  )
A.l与圆相交B.l与圆相切C.l与圆相离D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若f(x)=ex+lnx,则此函数的图象在点(1,f(1))处的切线方程为(e+1)x-y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,a,b,c分别是角A,B,C的对边.已知(a2+b2)sin(A-B)=(a2-b2)sin(A+B),试判断该三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,左、右焦点分别为F1、F2
(1)若曲线C1:y2=2px(p>0)的焦点恰是双曲线的右焦点,且交点连线过点F2,则求双曲线离心率.
(2)过双曲线右焦点F2且倾斜角为60°的线段F2M与y轴交于M,与双曲线交于N,已知$\overrightarrow{M{F_2}}=4\overrightarrow{N{F_2}}$,则求该双曲线的离心率;
(3)若过右焦点F且倾斜角为30°的直线与双曲线的右支有两个交点,则求此双曲线离心率的取值范围;
(4)若离心率$e∈[\sqrt{2},2]$,令双曲线的两条渐近线构成的角中,以实轴为平分线的角为θ,则求θ的取值范围;
(5)若存在两条直线x=±m与双曲线相交于A,B,C,D,且四边形ABCD为正方形,则求双曲线离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,既是偶函数,又在(0,π)上递增的函数的个数是(  )
①y=tan|x|
②y=cos(-x)
③$y=sin({x-\frac{π}{2}})$
④$y=|{cot\frac{x}{2}}|$.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.四棱锥P-ABCD中,PA⊥平面ABCD,ABCD为正方形,AB=PA=2,M,N分别为PA,PB的中点,则MD与AN所成角的余弦值为$\frac{2}{5}$.

查看答案和解析>>

同步练习册答案