精英家教网 > 高中数学 > 题目详情
函数y=ln(
x-sinx
x+sinx
)
的图象大致是(  )
A、精英家教网
B、精英家教网
C、精英家教网
D、精英家教网
分析:由函数的解析式可得函数的定义域关于原点对称,根据f(-x)=f(x),可得函数的图象关于y轴对称,故排除B、D,再根据当x∈(0,1)时,ln(
x-sinx
x+sinx
)
<0,从而排除C,从而得到答案.
解答:解:∵函数y=ln(
x-sinx
x+sinx
)
,∴x+sinx≠0,x≠0,故函数的定义域为{x|x≠0}.
再根据y=f(x)的解析式可得f(-x)=ln(
-x+sinx
-x-sinx
)=ln(
x-sinx
x+sinx
)=f(x),
故函数f(x)为偶函数,故函数的图象关于y轴对称,故排除B、D.
当x∈(0,1)时,∵0<sinx<x<1,∴0<
x-sinx
x+sinx
<1,
∴函数y=ln(
x-sinx
x+sinx
)
<0,故排除C,只有A满足条件,
故选:A.
点评:本题主要考查正弦函数的图象特征,函数的奇偶性的判断,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ln(ax+b)的图象在x=1处的切线方程为y=
1
2
x-
1
2
+ln2.
(1)证明:方程f(x)-x=0有且只有一个实根;
(2)若s,t∈(0,+∞),且s<t时,试证明:(1+s)ef(t-1)>(1+t)ef(s-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x)+f'(0)-e-x=-1,函数g(x)=-λlnf(x)+sinx是区间[-1,1]上的减函数.
(1)当x≥0时,曲线y=f(x)在点M(t,f(t))的切线与x轴、y轴围成的三角形面积为S(t),求S(t)的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]时恒成立,求t的取值范围;
(3)设函数h(x)=-lnf(x)-ln(x+m),常数m∈Z,且m>1,试判定函数h(x)在区间[e-m-m,e2m-m]内的零点个数,并作出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:设函数y=f(x)在(a,b)内可导,f'(x)为f(x)的导数,f''(x)为f'(x)的导数即f(x)的二阶导数,若函数y=f(x) 在(a,b)内的二阶导数恒大于等于0,则称函数y=f(x)是(a,b)内的下凸函数(有时亦称为凹函数).已知函数f(x)=xlnx
(1)证明函数f(x)=xlnx是定义域内的下凸函数,并在所给直角坐标系中画出函数f(x)=xlnx的图象;
(2)对?x1,x2∈R+,根据所画下凸函数f(x)=xlnx图象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]与x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小关系;
(3)当n为正整数时,定义函数N (n)表示n的最大奇因数.如N (3)=3,N (10)=5,….记S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,证明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

在不考虑空气阻力的条件下,火箭的最大速度y(km/s)和燃料的质量x(kg)、火箭(除燃料外)的质量m(kg)的函数关系是y=4[ln(m+x)-ln(
2
m)]+2ln2
,要使火箭的最大速度可达12km/s,则燃料质量与火箭质量的比值是
e3000-1
e3000-1

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)图象上的任意一点P的坐标(x,y)满足条件|x|≥|y|,则称函数f(x)具有性质S,那么下列函数中具有性质S的是(  )
A、f(x)=ex-1B、f(x)=ln(x+1)C、f(x)=sinxD、f(x)=tanx

查看答案和解析>>

同步练习册答案