精英家教网 > 高中数学 > 题目详情
3.向平面区域{(x,y)|0≤x≤2,0≤y≤2}内随机投入一点,则该点落在曲线y=$\frac{1}{x}$(x>0)下方的概率为$\frac{1+2ln2}{4}$.

分析 平面区域{(x,y)|0≤x≤2,0≤y≤2},表示正方形,面积为4,求出曲线y=$\frac{1}{x}$(x>0)下方,在正方形内的面积,即可求出概率.

解答 解:平面区域{(x,y)|0≤x≤2,0≤y≤2},表示正方形,面积为4,
曲线y=$\frac{1}{x}$(x>0)下方,在正方形内的面积为$\frac{1}{2}×2$+${∫}_{\frac{1}{2}}^{2}\frac{1}{x}dx$=1+2ln2,
所以该点落在曲线y=$\frac{1}{x}$(x>0)下方的概率为$\frac{1+2ln2}{4}$.
故答案为:$\frac{1+2ln2}{4}$.

点评 本题考查了几何概率问题,考查学生的计算能力,确定区域的面积是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.一机器元件的三视图及尺寸如图所示(单位:dm),则该组合体的体积为(  )
A.80dm3B.88dm3C.96dm3D.112dm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{{\sqrt{3}}}{2}$sin2x-cos2x-$\frac{1}{2}$,x∈R
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设在△ABC中,内角A,B,C所对边的边长分别为a,b,c,且c=2$\sqrt{3}$,f(C)=0,若sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.四棱锥P-ABCD中,PA⊥底面ABCD,且PA=AB=AD=$\frac{1}{2}$CD,AB∥CD,∠ADC=90°.
(1)在侧棱PC上是否存在一点Q,使BQ∥平面PAD?证明你的结论;
(2)求证:平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△ABC的顶点A(4,1),AB边上的中线CM所在的直线方程为2x-y-5=0,AC边上的高BH所在直线为x-2y-5=0.求:
(1)顶点C的坐标;
(2)直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.i为虚数单位,复数z=i2012+i2015在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.△ABC的内角A,B,C所对的边分别为a,b,c,且a,b,c成等比数列,若sinB=$\frac{5}{13}$,cosB=$\frac{12}{ac}$,则a+c的值为3$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足${a_1}=\frac{1}{4}$,${a_{n+1}}=\frac{1}{{4({1-{a_n}})}}$.
(1)设${b_n}=\frac{2}{{2{a_n}-1}}$,求证:数列{bn}为等差数列;
(2)求证:$\frac{a_2}{a_1}+\frac{a_3}{a_2}+…+\frac{{{a_{n+1}}}}{a_n}<n+\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\frac{x^2}{ln(x+a)-ax}(a∈R)$
(1)当a=0时,求函数f(x)的单调区间;
(2)当a=1时,设$h(x)=\frac{x^2}{f(x)}$,
(i)若对任意的x∈[0,+∞),h(x)≥kx2成立,求实数k的取值范围;
(ii)对任意x1>x2>-1,证明:不等式$\frac{{{x_1}-{x_2}}}{{h({x_1})-h({x_2})+{x_1}-{x_2}}}<\frac{{{x_1}+{x_2}+2}}{2}$恒成立.

查看答案和解析>>

同步练习册答案