分析 由a,b,c成等比数列,可得b2=ac,由sinB=$\frac{5}{13}$,cosB=$\frac{12}{ac}$,可解得ac=13,再由余弦定理求得a2+c2=37,从而求得(a+c)2的值,即可得解.
解答 解:∵a,b,c成等比数列,
∴b2=ac,
∵sinB=$\frac{5}{13}$,cosB=$\frac{12}{ac}$,
∴可得$\frac{25}{169}$=1-$\frac{144}{{a}^{2}{c}^{2}}$,解得:ac=13,
∵由余弦定理:b2=a2+c2-2accosB=ac=a2+c2-ac×$\frac{24}{13}$,解得:a2+c2=37.
∴(a+c)2=a2+c2+2ac=37+2×13=63,故解得a+c=3$\sqrt{7}$.
故答案为:3$\sqrt{7}$.
点评 本题主要考查正弦定理和余弦定理的应用,以及同角三角函数的基本关系、诱导公式的应用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{4\sqrt{3}}}{3}+\frac{{\sqrt{3}π}}{6}$ | B. | $\frac{{8\sqrt{3}}}{3}+\frac{{\sqrt{3}π}}{3}$ | C. | $\frac{{4\sqrt{3}}}{3}+\frac{{4\sqrt{3}π}}{3}$ | D. | $4\sqrt{3}+\sqrt{3}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com