| A. | 3 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
分析 求出圆心到直线的距离,利用以F1F2为直径的圆被直线$\frac{x}{a}$+$\frac{y}{b}$=1截得的弦长为$\sqrt{6}$a,求出a,c的关系,即可求出双曲线的离心率.
解答 解:由题意,圆心到直线的距离为d=$\frac{1}{\sqrt{\frac{1}{{a}^{2}}+\frac{1}{{b}^{2}}}}$=$\frac{ab}{c}$,
∵以F1F2为直径的圆被直线$\frac{x}{a}$+$\frac{y}{b}$=1截得的弦长为$\sqrt{6}$a,
∴2$\sqrt{{c}^{2}-\frac{{a}^{2}{b}^{2}}{{c}^{2}}}$=$\sqrt{6}$a,
∴2(c4-a2b2)=3a2c2,
∴2c4-2a2(c2-a2)=3a2c2,
∴2e4-5e2+2=0,
∵e>1,
∴e=$\sqrt{2}$.
故选:D.
点评 熟练掌握双曲线的性质和圆中弦长的计算、离心率计算公式是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com