精英家教网 > 高中数学 > 题目详情
2.已知直线l的极坐标方程为ρsinθ-2ρcosθ+3=0,则直线l的斜率是2.

分析 把直线l的极坐标方程化为直角坐标方程即可得出.

解答 解:直线l的极坐标方程为ρsinθ-2ρcosθ+3=0,
化为y-2x+3=0,即y=2x-3.
∴直线l的斜率是2.
故答案为:2.

点评 本题考查了把极坐标方程化为直角方程、直线的斜率,考查了计算能力,属于解出题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如图,网格上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该组合体的体积为(  )
A.12π+4+4$\sqrt{3}$B.12π+4$\sqrt{3}$C.4π+8D.4π+$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=-x2-3x-2,若g(x)=2-[f(x)]2
(1)求g(x)的解析式;
(2)求函数f(x)的零点(精确度0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0的左、右焦点分别为F1、F2,以F1F2为直径的圆被直线$\frac{x}{a}$+$\frac{y}{b}$=1截得的弦长为$\sqrt{6}$a,则双曲线的离心率为(  )
A.3B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.微信是现代生活进行信息交流的重要工具,对某城市年龄在20岁至60岁的微信用户进行有关调查发现,有$\frac{1}{3}$的用户平均每天使用微信时间不超过1小时,其他人都在1小时以上;若将这些微信用户按年龄分成青年人(20岁至40岁)和中年人(40岁至60岁)两个阶段,那么其中$\frac{3}{4}$是青年人;若规定:平均每天使用微信时间在1小时以上为经常使用微信,经常使用微信的用户中有$\frac{2}{3}$是青年人.
(I)现对该市微信用户进行“经常使用微信与年龄关系”的调查,采用随机抽样的方法选取容  量为l80的一个样本,假设该样本有关数据与调查结果完全相同,列出2×2列联表.
青年人中年人合计
经常使用微信
不经常使用微信
合计
(Ⅱ)由列表中的数据,是否有99.9%的把握认为“经常使用微信与年龄有关”?
(Ⅲ)从该城市微信用户中任取3人,其中经常使用微信的中年人人数为X,求出X的期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若0≤x≤π,则函数$y=sin({\frac{π}{3}+x})cos({\frac{π}{2}+x})$的单调递增区间为[$\frac{π}{3},\frac{5π}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数$f(x)=\left\{\begin{array}{l}{x^2},x≤0\\{log_3}x,x>0\end{array}\right.$,则f(9)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a,b,c分别为△ABC三个内角A,B,C的对边,$a=\sqrt{3}b•sinA-acosB$
(1)求角B.
(2)若b=2,△ABC的面积为$\sqrt{3}$,求a,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某校为了调查“学业水平考试”学生的数学成绩,随机地抽取该校甲、乙两班各10名同学,获得的数据如下:(单位:分)
甲:132,108,112,121,113,121,118,127,118,129;
乙:133,107,120,113,121,116,126,109,129,127.
(1)以百位和十位为茎,个位为叶,在图5中作出以上抽取的甲、乙两班学生数学成绩的茎叶图,求出这20个数据的众数,并判断哪个班的平均水平较高;
(2)将这20名同学的成绩按下表分组,现从第一、二、三组中,采用分层抽样的方法抽取6名同学成绩作进一步的分析,求应从这三组中各抽取的人数.
组别第一第二第三第四
分值区间[100,110)[110,120)[120,130)[130,140]

查看答案和解析>>

同步练习册答案