精英家教网 > 高中数学 > 题目详情
8.i为虚数单位,复数z=i2012+i2015在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由i2=-1化简复数z,然后求出复数z在复平面内对应的点的坐标,则答案可求.

解答 解:∵z=i2012+i2015=i2012+i2012+3=1-i,
复数z=i2012+i2015在复平面内对应的点的坐标为:(1,-1),
位于第四象限.
故选:D.

点评 本题考查了复数的基本概念,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=2x+$\frac{a}{x}$在[1,+∞)上为增函数,则实数a的取值范围是(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.关于x的方程(x2-1)2-3|x2-1|+2=0的不相同实根的个数是(  )
A.3B.4C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如果一个几何体的三视图如图所示(单位:cm),那么这个几何体的外接球的表面积是(  )
A.17πcm2B.34πcm2C.68πcm2D.136πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.向平面区域{(x,y)|0≤x≤2,0≤y≤2}内随机投入一点,则该点落在曲线y=$\frac{1}{x}$(x>0)下方的概率为$\frac{1+2ln2}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数y=$\frac{1}{2}$sin2x+acosx在区间(0,π)上是增函数,则实数a的取值范围是(  )
A.(-∞,-l]B.[-1,+∞)C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个几何体的三视图如图所示,则这个几何体的体积为(  )
A.$\frac{{4\sqrt{3}}}{3}+\frac{{\sqrt{3}π}}{6}$B.$\frac{{8\sqrt{3}}}{3}+\frac{{\sqrt{3}π}}{3}$C.$\frac{{4\sqrt{3}}}{3}+\frac{{4\sqrt{3}π}}{3}$D.$4\sqrt{3}+\sqrt{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=-\sqrt{5}+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(其中t为参数)以O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标,曲线C的极轴方程为ρ=4cosθ.
(Ⅰ)求曲线C的直角坐标方程及直线l的普通方程;
(Ⅱ)将曲线C上所有点的横坐标缩短为原来的$\frac{1}{2}$(纵坐标不变),再将所得曲线向左平移1个单位,得到曲线C1,求曲线C1上的到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.不可能以直线$y=\frac{1}{2}x+b$作为切线的曲线是(  )
A.y=sinxB.$y=\frac{1}{x}$C.y=lnxD.y=ex

查看答案和解析>>

同步练习册答案