分析 求出f(x)的对称轴和周期,做出f(x)的函数图象,根据函数的对称性得出答案.
解答 解:∵f(x)是奇函数,f(1-x)=f(1+x),
∴f(x+1)=f(1-x)=-f(x-1),
f(x+3)=f(-1-x)=-f(x+1),
∴f(x-1)=f(x+3),
∴f(x)的周期为4,
又f(1-x)=f(1+x),f(x)是奇函数,
∴f(x)关于直线x=1对称,f(x)根与原点对称,
做出f(x)的函数图象如图所示:![]()
令y=2f(x)-1=0得f(x)=$\frac{1}{2}$,
由图象可知f(x)=$\frac{1}{2}$共有4个解,分别关于x=1和x=5对称,
设4个解分别为x1,x2,x3,x4,则x1+x2=2,x3+x4=10,
∴x1+x2+x3+x4=12.
故答案为12.
点评 本题考查了函数周期性和对称性的应用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 335 | B. | 337 | C. | 1 678 | D. | 2 017 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| x | 0 | 1 | 4 | 5 | 6 | 8 |
| y | 1.3 | 1.8 | 5.6 | 6.1 | 7.4 | 9.3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,x2+2x+1=0 | B. | ?x∈R,-$\sqrt{x+1}$≥0 | ||
| C. | ?x∈N*,log2x>0 | D. | ?x∈R,cosx<2x-x2-3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com