D
分析:根据积函数的求导法则可知F(x)=(x2+1)f(x),依题意可知可判断函数F(x)=(x2+1)f(x)在(0,+∞)内单调递减;再由f(-1)=f(1)=0,易得f(x)在(0,+∞)内的正负性;最后结合奇函数的图象特征,可得f(x)在(-∞,0)内的正负性.则f(x)>0的解集即可求得
解答:令F(x)=(x2+1)f(x),
则F′(x)=(x2+1)f′(x)+2xf(x),
∵当x>0时,(x2+1)f′(x)+2xf(x)<0,
∴当x>0时,F′(x)<0,
∴F(x)=(x2+1)f(x)在(0,+∞)上单调递减,
∵f(x)是定义在R上的奇函数,f(-1)=0,
∴f(1)=0,
∴当0<x<1时,F(x)=(x2+1)f(x)>0,
∴f(x)>0;①
又F(-x)=)=(x2+1)f(-x)=-(x2+1)f(x)=-F(x),
∴F(x)=(x2+1)f(x)为奇函数,又x>0时,F(x)=(x2+1)f(x)在(0,+∞)上单调递减,
∴x<0时,F(x)=(x2+1)f(x)在(-∞,0)上单调递减,
∵f(-1)=0,
∴当x<-1时,F(x)=(x2+1)f(x)>0,从而f(x)>0;②
由①②得:0<x<1或x<-1时f(x)>0.
∴不等式f(x)>0的解集是(0,1)∪(-∞,-1).
故选D.
点评:本题主要考查函数求导法则及函数单调性与导数的关系,同时考查了奇偶函数的图象特征,熟练掌握导数的运算法则是解题的关键,考查运算能力,属难题.