精英家教网 > 高中数学 > 题目详情

【题目】本小题满分12己知函数fx=

1求曲线y=fx在点0f0))处的切线方程;

2求证:当x01时,fx>2

3设实数k使得fx>kx01恒成立,求k的最大值

【答案】12详见解析32

【解析】

试题分析:1求导:利用导数几何意义得切线斜率:,又 ,由点斜式得切线方程:2利用导数证明不等式,实质利用导数求对应函数最值:,令 ,只需证3恒成立问题,一般利用变量分离转化为对应函数最值,这较繁且难,本题由201上恒成立,只需证明当时,01上不恒成立,这样就简单多了

试题解析:1

2,结论成立

3201上恒成立

时,令

时, ,即当时,01上不恒成立

k的最大值为2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数处的切线与直线垂直.

(1)求实数值;

(2)若不等式对任意的实数恒成立,求实数的取值范围;

(3)设,且数列的前项和为,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)讨论函数的单调性;

(Ⅱ)若时,关于的方程有唯一解,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系内,已知点及线段,在线段上任取一点,线段长度的最小值称为“点到线段的距离”,记为.

(1)设点,线段 ,求

(2)设 ,线段,线段,若点满足,求关于的函数解析式,并写出该函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为:yx2-200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.

该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100)作为样本进行统计,请根据下面尚未完成并有局部污损的频率分布表(如图所示),解决下列问题.

组别

分组

频数

频率

1

[5060)

8

0.16

2

[6070)

a

3

[7080)

20

0.40

4

[8090)

0.08

5

[90100]

2

b

合计

(1)求出ab的值;

(2)在选取的样本中,从竞赛成绩是80分以上(80)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动.

①求所抽取的2名同学中至少有1名同学来自第5组的概率;

②求所抽取的2名同学来自同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点

(1)求椭圆的方程;

(2)设椭圆与轴的非负半轴交于点,过点作互相垂直的两条直线,分别交椭圆于两点,连接,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角ABC的对边分别为abc,已知2cosCacosB+bcosA=c

)求C;()若c=ABC的面积为,求ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)x2b图象上的点P(2,1)关于直线yx的对称点Q在函数g(x)lnxa上.

()求函数h(x)g(x)f(x)的最大值;

()对任意x1[1e]x2是否存在实数k使得不等式成立若存在请求出实数k的取值范围;若不存在请说明理由.

查看答案和解析>>

同步练习册答案