精英家教网 > 高中数学 > 题目详情
18.函数f(x)是以4为周期的奇函数,且f(1)=-$\frac{3}{2}$,则sin[π•f(3)+$\frac{π}{3}$]的值是-$\frac{1}{2}$.

分析 由f(x)以4为周期,得到f(3)=f(3-4)=f(-1),再由函数f(x)为奇函数,得到f(-x)=-f(x),求出f(-1)的值,即为f(3)的值,代入原式计算即可得到结果.

解答 解:∵函数f(x)是以4为周期的奇函数,且f(1)=-$\frac{3}{2}$,
∴f(3)=f(3-4)=f(-1)=-f(1)=$\frac{3}{2}$,
则原式=sin($\frac{3}{2}$π+$\frac{π}{3}$)=-sin$\frac{π}{6}$=-$\frac{1}{2}$.
故答案为:-$\frac{1}{2}$.

点评 此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.x,y满足约束条件$\left\{\begin{array}{l}{0≤x≤2}\\{0≤y≤2}\\{x-3y≤-2}\end{array}\right.$,则z=x-y的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求和:Sn=1+(1+q)+(1+q+q2)+…+(1+q+q2+…+qn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若X~B(5,0.1),则P(X≤2)等于0.99144.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.计算机中常用的十六进制是逢16进1的计数制,采用数字0-9和字母A-F共16个计数符号,这些符号与十进制的数字的对应关系如下表:
十六进制01234567
十进制01234567
十六进制89ABCDEF
十进制89101112131415
例如,用十六进制表示A×B=6E,则E×F=(  )
A.E2B.4FC.3DD.D2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.△ABC中,a:b:c=2:(1+$\sqrt{3}$):$\sqrt{2}$,那么A=45°,B=105°,C=30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,A(-1,-1),B(3,-4),C(6,0),四边形ABCD为平行四边形.
(1)求$\overrightarrow{AB}$-$\overrightarrow{CB}$与$\overrightarrow{DC}$的夹角;
(2)若$\overrightarrow{AC}$⊥($\overrightarrow{AD}$+t$\overrightarrow{AB}$),求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.当b>a>0时,比较b,a,$\frac{a+b}{2}$,$\sqrt{ab}$,$\sqrt{\frac{{a}^{2}{+b}^{2}}{2}}$,$\frac{2ab}{a+b}$的大小(运用基本不等式及比较法)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx+$\frac{a}{x}$(a>0).
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在[1,+∞)上的最小值;
(Ⅲ)证明:?a∈(0,1),f($\frac{{a}^{2}}{2}$)>$\frac{{a}^{3}}{2}$.

查看答案和解析>>

同步练习册答案