精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,过顶点A(0,1)的直线L与椭圆C相交于两点A,B.
(1)求椭圆C的方程;
(2)若点M在椭圆上且满足
OM
=
1
2
OA
+
3
2
OB
,求直线L的斜率k的值.
(1)由e=
c
a
=
3
2
,b=1,a2=1+c2,解得a=2,
故椭圆方程为
x2
4
+y2=1

(2)设l的方程为y=kx+1,A(x1,y1),B(x2,y2),M(m,n).
联立 
y=kx+1
x2
4
+y2=1
,消去y解得 (1+4k2)x2+8kx=0,
因为直线l与椭圆C相交于两点,所以△=(8k)2>0,
所以x1+x2=-
8k
1+4k2
,x1×x2=0,
OM
=
1
2
OA
+
3
2
OB
,∴
m=
1
2
(x1+
3
x2)
n=
1
2
(y1+
3
y2)

点M在椭圆上,则m2+4n2=4,
1
4
(x1+
3
x2)2+(y1+
3
y2)2=4
,化简得
x1x2+4y1y2=x1x2+4(kx1+1)(kx2+1)=(1+4k2)x1x2+4k(x1+x2)+4=0,
∴4k•(-
8k
1+4k2
)+4=0,解得k=±
1
2

故直线l的斜率k=±
1
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案