【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.![]()
(1)证明:CD⊥平面PAE;
(2)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P﹣ABCD的体积.
【答案】
(1)
解法一:连接AC,由AB=4,BC=3,∠ABC=90°,得AC=5,
又AD=5,E是CD得中点,
所以CD⊥AE,
PA⊥平面ABCD,CD平面ABCD.
所以PA⊥CD,
而PA,AE是平面PAE内的两条相交直线,
所以CD⊥平面PAE.
解法二:以A为坐标原点,AB,AD,AP所在直线分别为X轴,Y轴,Z轴建立空间直角坐标系,
设PA=h,则A(0,0,0),B(4,0,0),C(4,3,0),D(0,5,0),E(2,4,0),P(0,0,h).
=(﹣4,2,0),
=(2,4,0),
=(0,0,h).
因为
=﹣8+8+0=0,
=0.
所以CD⊥AE,CD⊥AP,而AP,AE是平面PAE内的两条相交直线,
所以CD⊥平面PAE.
(2)
法一:过点B作BG∥CD,分别与AE,AD相交于点F,G,连接PF,
由CD⊥平面PAE知,BG⊥平面PAE,于是∠BPF为直线PB与平面PAE所成的角,且BG⊥AE.
由PA⊥平面ABCD知,∠PBA即为直线PB与平面ABCD所成的角.
由题意∠PBA=∠BPF,因为sin∠PBA=
,sin∠BPF=
,所以PA=BF.
由∠DAB=∠ABC=90°知,AD∥BC,又BG∥CD.
所以四边形BCDG是平行四边形,
故GD=BC=3,于是AG=2.
在RT△BAG中,AB=4,AG=2,BG⊥AF,
所以BG=
=2
,BF=
=
=
.
于是PA=BF=
.
又梯形ABCD的面积为S=
×(5+3)×4=16.
所以四棱锥P﹣ABCD的体积为V=
×S×PA=
×16×
=
.
法二:由题设和第一问知,
,
分别是平面PAE,平面ABCD的法向量,
而PB与平面PAE所成的角和PB与平面ABCD所成的角相等,
所以:|cos<
,
>|=|cos<
,
>|,即|
|=|
|.
由第一问知
=(﹣4,2,0),
=((0,0,﹣h),又
=(4,0,﹣h).
故|
|=|
|.
解得h=
.
又梯形ABCD的面积为S=
×(5+3)×4=16.
所以四棱锥P﹣ABCD的体积为V=
×S×PA=
×16×
=
.
![]()
![]()
【解析】法一:(1)先根据条件得到CD⊥AE;再结合PA⊥平面ABCD即可得到结论的证明;(2)先根据直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等得到PA=BF,进而得到四边形BCDG是平行四边形,在下底面内求出BF的长以及下底面的面积,最后代入体积计算公式即可.
法二:(1)先建立空间直角坐标系,求出各点的坐标,进而得到
=0以及
=0.即可证明结论;(2)先根据直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等得到PA的长,再求出下底面面积,最后代入体积计算公式即可.
【考点精析】解答此题的关键在于理解直线与平面垂直的判定的相关知识,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想,以及对空间角的异面直线所成的角的理解,了解已知
为两异面直线,A,C与B,D分别是
上的任意两点,
所成的角为
,则![]()
科目:高中数学 来源: 题型:
【题目】样本(x1 , x2…,xn)的平均数为x,样本(y1 , y2 , …,ym)的平均数为
(
≠
).若样本(x1 , x2…,xn , y1 , y2 , …,ym)的平均数
=α
+(1﹣α)
,其中0<α<
,则n,m的大小关系为( )
A.n<m
B.n>m
C.n=m
D.不能确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆
(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知(1,e)和(e,
)都在椭圆上,其中e为椭圆的离心率. ![]()
(1)求椭圆的方程;
(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.
(i)若AF1﹣BF2=
,求直线AF1的斜率;
(ii)求证:PF1+PF2是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( )
A.(0,1)B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为K(K为正整数).
(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;
(2)假设这三种部件的生产同时开工,试确定正整数K的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,则
_____.
【答案】![]()
【解析】
分子分母同时除以
,把目标式转为
的表达式,代入可求.
,则![]()
![]()
故答案为:
.
【点睛】
本题考查三角函数的化简求值,常用方法:(1)弦切互化法:主要利用公式
, 形如
等类型可进行弦化切;(2)“1”的灵活代换
和
的关系进行变形、转化.
【题型】填空题
【结束】
15
【题目】如图,正方体
的棱长为1,
为
中点,连接
,则异面直线
和
所成角的余弦值为_____.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,圆
的普通方程为
. 在以坐标原点为极点,
轴正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(Ⅰ) 写出圆
的参数方程和直线
的直角坐标方程;
( Ⅱ ) 设直线
与
轴和
轴的交点分别为
,
为圆
上的任意一点,求
的取值范围.
【答案】(1)
;
.
(2)
.
【解析】【试题分析】(I)利用圆心和半径,写出圆的参数方程,将圆的极坐标方程展开后化简得直角坐标方程.(II)求得
两点的坐标, 设点
,代入向量
,利用三角函数的值域来求得取值范围.
【试题解析】
(Ⅰ)圆
的参数方程为
(
为参数).
直线
的直角坐标方程为
.
(Ⅱ)由直线
的方程
可得点
,点
.
设点
,则
.
.
由(Ⅰ)知
,则
.
因为
,所以
.
【题型】解答题
【结束】
23
【题目】选修4-5:不等式选讲
已知函数
,
.
(Ⅰ)若对于任意
,
都满足
,求
的值;
(Ⅱ)若存在
,使得
成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com