【题目】在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研究投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:
试销价格 |
|
|
|
|
|
|
产品销量 |
|
|
|
|
|
|
已知变量
,
具有线性相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲/span>
;乙
;丙
,其中有且仅有一位同学的计算结果是正确的.
(1)试判断谁的计算结果正确?求回归方程。
(2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是“理想数据”.现从检测数据中随机抽取3个,求“理想数据”的个数
的分布列和数学期望.
科目:高中数学 来源: 题型:
【题目】如图,在三棱台ABC﹣A1B1C1中,底面ABC是边长为2的等边三角形,上、下底面的面积之比为1:4,侧面A1ABB1⊥底面ABC,并且A1A=A1B1,∠AA1B=90°.
(1)平面A1C1B∩平面ABC=l,证明:A1C1∥l;
(2)求平面A1C1B与平面ABC所成二面角的正弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了人口规模相当的
个城市采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价:
(单位:元/月)和购买总人数
(单位:万人)的关系如表:
定价x(元/月) | 20 | 30 | 50 | 60 |
年轻人(40岁以下) | 10 | 15 | 7 | 8 |
中老年人(40岁以及40岁以上) | 20 | 15 | 3 | 2 |
购买总人数y(万人) | 30 | 30 | 10 | 10 |
(Ⅰ)根据表中的数据,请用线性回归模型拟合
与
的关系,求出
关于
的回归方程;并估计
元/月的流量包将有多少人购买?
(Ⅱ)若把
元/月以下(不包括
元)的流量包称为低价流量包,
元以上(包括
元)的流量包称为高价流量包,试运用独立性检验知识,填写下面列联表,并通过计算说明是否能在犯错误的概率不超过
的前提下,认为购买人的年龄大小与流量包价格高低有关?
定价x(元/月) | 小于50元 | 大于或等于50元 | 总计 |
年轻人(40岁以下) | |||
中老年人(40岁以及40岁以上) | |||
总计 |
参考公式:其中
![]()
其中![]()
参考数据:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省确定从2021年开始,高考采用“
”的模式,取消文理分科,即“3”包括语文、数学、英语,为必考科目:“1”表示从物理、历史中任选一门;“2”则是从生物、化学、地理、政治中选择两门,共计六门考试科目.某高中从高一年级2000名学生(其中女生900人)中,采用分层抽样的方法抽取
名学生进行调查.
(1)已知抽取的
名学生中含男生110人,求
的值及抽取到的女生人数;
(2)学校计划在高二上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的
名学生讲行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目).下表是根据调查结果得到的
列联表,请将列联表补充完整,并判断是否有
的把握认为选择科目与性别有关?说明你的理由;
性别 | 选择物理 | 选择历史 | 总计 |
男生 | 50 | ||
女生 | 30 | ||
总计 |
(3)在(2)的条件下,从抽取的选择“物理”的学生中按分层抽样抽取6人,再从这6名学生中抽取2人,对“物理”的选课意向作深入了解,求2人中至少有1名女生的概率.
参考公式:
,其中
.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的一个焦点为
,上顶点为
,原点O到直线
的距离为
.
(1)求椭圆C的标准方程;
(2)若点T在圆
上,点A为椭圆的右顶点,是否存在过点A的直线l交椭圆C于点B(异于点A),使得
成立?若存在,求出直线l的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,且椭圆上存在一点
,满足
.
(1)求椭圆
的标准方程;
(2)过椭圆
右焦点
的直线
与椭圆
交于不同的两点
,求
的内切圆的半径的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业拟生产一种如图所示的圆柱形易拉罐(上下底面及侧面的厚度不计),易拉罐的体积为
,设圆柱的高度为
,底面半径为
,且
,假设该易拉罐的制造费用仅与其表面积有关.已知易拉罐侧面制造费用为
元
,易拉罐上下底面的制造费用均为
元
为常数).
![]()
(1)写出易拉罐的制造费用
(元)关于
的函数表达式,并求其定义域;
(2)求易拉罐制造费用最低时
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
为左右焦点,
为短轴端点,长轴长为4,焦距为
,且
,
的面积为
.
(Ⅰ)求椭圆
的方程
(Ⅱ)设动直线
椭圆
有且仅有一个公共点
,且与直线
相交于点
.试探究:在坐标平面内是否存在定点
,使得以
为直径的圆恒过点
?若存在求出点
的坐标,若不存在.请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com