分析 由已知得x<0时,f(x)=(-x)-$\frac{1}{-x}$=-x+$\frac{1}{x}$,f(x)在(-∞,0)上的单调递减,利用定义法能进行证明.
解答 解:∵函数f(x)是(-∞,0)∪(0,+∞)上的偶函数,
x>0时f(x)=x-$\frac{1}{x}$,
∴x<0时,f(x)=(-x)-$\frac{1}{-x}$=-x+$\frac{1}{x}$,
f(x)在(-∞,0)上的单调递减,证明如下:
在(-∞,0)上任取x1,x2,令x1<x2,
则f(x1)-f(x2)=(-x1+$\frac{1}{{x}_{1}}$)-(-x2+$\frac{1}{{x}_{2}}$)=(x2-x1)+$\frac{{x}_{2}-{x}_{1}}{{x}_{1}{x}_{2}}$=(x2-x1)(1-$\frac{1}{{x}_{1}{x}_{2}}$),
∵x1,x2∈(-∞,0),x1<x2,
∴f(x1)-f(x2)=(x2-x1)(1-$\frac{1}{{x}_{1}{x}_{2}}$)>0,
∴f(x)在(-∞,0)上的单调递减.
点评 本题考查函数的解析式的求法,考查函数的单调性的判断与证明,是中档题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 80π | B. | 96π | C. | 100π | D. | 144π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com