精英家教网 > 高中数学 > 题目详情

已知二次函数的最小值为
⑴求函数的解析式;
⑵设,若上是减函数,求实数的取值范围;
⑶设函数,若此函数在定义域范围内不存在零点,求实数的取值范围.[

(1);(2);(3)

解析试题分析:(1)由可设,再由的最小值求a的值;(2)首先对
二次项系数分三种情况讨论,然后确定对称轴与给定区间
端点的关系;(3)要满足题意,须有有解,且无解.然后求
的最小值,令,但不属于的值域,即可得实数的取值范围。
⑴ 由题意设
的最小值为, ∴,且, ∴ 
 .
⑵ ∵
①当时,在[-1, 1]上是减函数,∴ 符合题意.
② 当时,对称轴方程为:
ⅰ)当,即 时,抛物线开口向上,
,  得  , ∴
ⅱ)当, 即时,抛物线开口向下,
,得 , ∴.
综上知,实数的取值范围为.
⑶法一:∵ 函数在定义域内不存在零点,必须且只须有
有解,且无解.
,且不属于的值域,
又∵
的最小值为的值域为
,且
的取值范围为.
法二:,令
必有,得
因为函数在定义域内不存在零点,
,即,又(否则函数定义域为空集,不是函数),
的取值范围是
考点:(1)待定系数法求函数的解析式;(2)二次项系数及二次函数对称轴与给定区间引起的分类讨论;(3)构造函数研究函数的零点个数。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

函数的单调递增区间是_________________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数若存在成立,则称的不动点.已知
(1)当时,求函数的不动点;
(2)若对任意实数,函数恒有两个相异的不动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数其中.
(1)已知,求的值;
(2)若在区间恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某厂生产某种产品的年固定成本为250万元,每生产万件,需另投入的成本为(单位:万元),当年产量小于80万件时,;当年产量不小于80万件时,.假设每万件该产品的售价为50万元,且该厂当年生产的该产品能全部销售完.
(1)写出年利润(万元)关于年产量(万件)的函数关系式;
(2)年产量为多少万件时,该厂在该产品的生产中所获利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x吨、3x吨.
(1)求y关于x的函数;
(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数,不等式的解集为.
(1)求的解析式; 
(2)若函数上单调,求实数的取值范围;
(3)若对于任意的x∈[-2,2],都成立,求实数n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为偶函数.
(1)求的值;
(2)若方程有且只有一个根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2.
(1)求a的值及f(x)的定义域.
(2)求f(x)在区间上的最大值.

查看答案和解析>>

同步练习册答案