精英家教网 > 高中数学 > 题目详情

用数学归纳法证明" (1·22-2·32)+(3·42-4·52)+…+[(2n-1)·(2n)2-2n·(2n+1)2]=-n(n+1)(4n+3),n∈N*"的第一步是: 当n=1时,

 ∵左边=_______, 右边=______ (填计算结果)

∴左边=右边, 等式成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用数学归纳法证明1+q+q2+…+qn+1=
qn+2-1
q-1
(q≠1)
.在验证n=1等式成立时,等式的左边的式子是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
(1)函数f(x)=log3(x2-2x)的单调减区间为(-∞,1);
(2)已知P:|2x-3|>1,q:
1
x2+x-6
>0
,则p是q的必要不充分条件;
(3)命题“?x∈R,sinx≤
1
2
”的否定是:“?x∈R,sinx>”;
(4)已知函数f(x)=
3
sinωx+cosωx(ω>0)
,y=f(x)的图象与直线y=2的两个相邻交点的距离等于π,则y=f(x)的单调递增区间是[kπ-
π
3
,kπ+
π
6
],k∈z

(5)用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•3…(2n-1)(n∈N*)时,从“k”到“k+1”的证明,左边需增添的一个因式是2(2k+1);
其中所有正确的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•红桥区二模)已知数列{an},{bn},其中a1=p,b1=q,又an=pan-1,bn=qan-1+rbn-1(n≥2,n∈N+)(p、q、r为常数,且pqr≠0,p≠r).
(Ⅰ)写出b2,b3,b4(用p、q、r表示);
(Ⅱ)试推测出bn用p、q、r、n表示的公式;
(Ⅲ)请用数学归纳法证明你(Ⅱ)中的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•红桥区二模)已知等比数列{an}的公比q≠1,a1=3,且3a2、2a3、a4成等差数列.
(1)求数列{an}的通项公式;
(2)设数列{bn},b1=q,bn=3an-1+rbn-1(n≥2,n∈N*)(r为常数,且qr≠0,r≠3).
①写出b2,b3,b4
②试推测出bn用q,r,n表示的公式,并用数学归纳法证明你推测的结论.

查看答案和解析>>

科目:高中数学 来源:同步题 题型:证明题

用数学归纳法证明:如果{an}是等比数列,公比为q,则an=a1·qn-1对于一切n∈N*都成立。

查看答案和解析>>

同步练习册答案