¸ø³öÏÂÁÐÃüÌ⣺
£¨1£©º¯Êýf(x)=log3(x2-2x)µÄµ¥µ÷¼õÇø¼äΪ£¨-¡Þ£¬1£©£»
£¨2£©ÒÑÖªP£º|2x-3|£¾1£¬q£º
1
x2+x-6
£¾0
£¬ÔòpÊÇqµÄ±ØÒª²»³ä·ÖÌõ¼þ£»
£¨3£©ÃüÌâ¡°?x¡ÊR£¬sinx¡Ü
1
2
¡±µÄ·ñ¶¨ÊÇ£º¡°?x¡ÊR£¬sinx£¾¡±£»
£¨4£©ÒÑÖªº¯Êýf(x)=
3
sin¦Øx+cos¦Øx(¦Ø£¾0)
£¬y=f£¨x£©µÄͼÏóÓëÖ±Ïßy=2µÄÁ½¸öÏàÁÚ½»µãµÄ¾àÀëµÈÓڦУ¬Ôòy=f£¨x£©µÄµ¥µ÷µÝÔöÇø¼äÊÇ[k¦Ð-
¦Ð
3
£¬k¦Ð+
¦Ð
6
]£¬k¡Êz
£»
£¨5£©ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£¨n+1£©£¨n+2£©¡­£¨n+n£©=2n•1•3¡­£¨2n-1£©£¨n¡ÊN*£©Ê±£¬´Ó¡°k¡±µ½¡°k+1¡±µÄÖ¤Ã÷£¬×ó±ßÐèÔöÌíµÄÒ»¸öÒòʽÊÇ2£¨2k+1£©£»
ÆäÖÐËùÓÐÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©
·ÖÎö£º£¨1£©ÀûÓöÔÊýº¯ÊýµÄ¶¨ÒåÓò¼´¿ÉÅжϣ¨1£©µÄÕýÎó£»
£¨2£©Í¨¹ý½â²»µÈʽ
1
x2+x-6
£¾0¿ÉÇóµÃÌõ¼þq£¬Í¨¹ý½â¾ø¶ÔÖµ²»µÈʽ|2x-3|£¾1¿ÉÇóµÃÌõ¼þp£¬ÀûÓóä·ÖÌõ¼þÓë±ØÒªÌõ¼þµÄ¸ÅÄî¼´¿ÉÅжÏÆäÕýÎó£»
£¨3£©ÀûÓÃÃüÌâµÄ·ñ¶¨¿ÉÅжϣ¨3£©£»
£¨4£©ÓÉf£¨x£©=2sin£¨¦Øx+
¦Ð
6
£©µÄͼÏóÓëÖ±Ïßy=2µÄÁ½¸öÏàÁÚ½»µãµÄ¾àÀëµÈÓڦпÉÇóµÃ¦Ø£¬´Ó¶ø¿ÉÇóy=f£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£¬¼Ì¶ø¿ÉÅÐÆäÕýÎó£»
£¨5£©ÀûÓÃÊýѧ¹éÄÉ·¨£¬¼´¿ÉÖªÖ¤Ã÷£¨n+1£©£¨n+2£©¡­£¨n+n£©=2n•1•3¡­£¨2n-1£©£¨n¡ÊN*£©Ê±£¬´Ó¡°k¡±µ½¡°k+1¡±µÄÖ¤Ã÷ÖУ¬×ó±ßÐèÔöÌíµÄÒ»¸öÒòʽ£¬´Ó¶ø¿ÉÅÐÆäÕýÎó£®
½â´ð£º½â£º£¨1£©ÓÉx2-2£¾0µÃx£¾
2
»òx£¼-
2
£¬
Óɸ´ºÏº¯ÊýµÄµ¥µ÷ÐÔÖª£¬f£¨x£©=log3(x2-2x)ÔÚ£¨-¡Þ£¬-
2
£©Éϵ¥µ÷µÝ¼õ£¬¹Ê£¨1£©´íÎó£»
£¨2£©ÓÉ
1
x2+x-6
£¾0µÃx£¾2»òx£¼-3£¬¼´Ìõ¼þqΪ£ºx£¾2»òx£¼-3£¬¼´Q={x|x£¾2»òx£¼-3}£»
ÓÉ|2x-3|£¾1µÃx£¾2»òx£¼-1£¬¼´Ìõ¼þpΪ£ºx£¾2»òx£¼-1£¬¼´P={x|x£¾2»òx£¼-1}£»
ÏÔÈ»£¬Q?P£¬
¡àq⇒p£¬·´Ö®²»ÐУ¬
¡àpÊÇqµÄ±ØÒª²»³ä·ÖÌõ¼þ£¬¹Ê£¨2£©ÕýÈ·£»
£¨3£©ÃüÌâ¡°?x¡ÊR£¬sinx¡Ü
1
2
¡±µÄ·ñ¶¨ÊÇ£º¡°?x¡ÊR£¬sinx£¾
1
2
¡±ÕýÈ·£»
£¨4£©¡ßf£¨x£©=
3
sin¦Øx+cos¦Øx=2sin£¨¦Øx+
¦Ð
6
£©£¬ÇÒÆäͼÏóÓëÖ±Ïßy=2µÄÁ½¸öÏàÁÚ½»µãµÄ¾àÀëµÈÓڦпÉÇóµÃ¦Ø£¬
¡àT=¦Ð£¬¦Ø=2£¬
¡àf£¨x£©=2sin£¨2x+
¦Ð
6
£©£¬
ÓÉ2k¦Ð-
¦Ð
2
¡Ü2x+
¦Ð
6
¡Ü2k¦Ð+
¦Ð
2
µÃ£ºk¦Ð-
¦Ð
3
¡Üx¡Ük¦Ð+
¦Ð
6
£¨k¡ÊZ£©£¬
¡ày=f£¨x£©µÄµ¥µ÷µÝÔöÇø¼äÊÇ[k¦Ð-
¦Ð
3
£¬k¦Ð+
¦Ð
6
]£¨k¡ÊZ£©£¬¹Ê£¨4£©ÕýÈ·£»
£¨5£©ÓÉÊýѧ¹éÄÉ·¨Ö¤Ã÷£¨n+1£©£¨n+2£©¡­£¨n+n£©=2n•1•3¡­£¨2n-1£©£¨n¡ÊN*£©Ê±£¬´Ó¡°k¡±µ½¡°k+1¡±µÄÖ¤Ã÷£¬×ó±ßÐèÔöÌíµÄÒ»¸öÒòʽÊÇ
(2k+1)(2k+2)
k+1
=2£¨2k+1£©£¬¹Ê£¨5£©ÕýÈ·£®
×ÛÉÏËùÊö£¬ËùÓÐÕýÈ·µÄ¸öÊýÊÇ4¸ö£®
¹ÊÑ¡D£®
µãÆÀ£º±¾Ì⿼²é¸´ºÏº¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²é³ä·ÖÌõ¼þÓë±ØÒªÌõ¼þ£¬¿¼²éÓÉy=Asin£¨¦Øx+¦Õ£©µÄ²¿·ÖͼÏóÈ·¶¨Æä½âÎöʽ£¬Í»³ö¿¼²éÊýѧ¹éÄÉ·¨µÄÓ¦Óã¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÃüÌ⣺
£¨1£©ÒÑÖª¿Éµ¼º¯Êýf£¨x£©£¬x¡ÊD£¬Ôòº¯Êýf£¨x£©ÔÚµãx0´¦È¡µÃ¼«ÖµµÄ³ä·Ö²»±ØÒªÌõ¼þÊÇf¡ä£¨x0£©=0£¬x0¡ÊD£®
£¨2£©ÒÑÖªÃüÌâP£º?x¡ÊR£¬sinx¡Ü1£¬Ôò©Vp£º?x¡ÊR£¬sinx£¾1£®
£¨3£©ÒÑÖªÃüÌâp£º
1
x 2-3x+2
£¾0
£¬Ôò©Vp£º
1
x 2-3x+2
¡Ü0
£®
£¨4£©¸ø¶¨Á½¸öÃüÌâP£º¶ÔÈÎÒâʵÊýx¶¼ÓÐax2+ax+1£¾0ºã³ÉÁ¢£»Q£º¹ØÓÚxµÄ·½³Ìx2-x+a=0ÓÐʵÊý¸ù£®Èç¹ûP¡ÄQΪ¼ÙÃüÌ⣬P¡ÅQΪÕæÃüÌ⣬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ(-¡Þ£¬0)¡È(
1
4
£¬4)
£®
ÆäÖÐËùÓÐÕæÃüÌâµÄ±àºÅÊÇ
£¨2£©£¬£¨4£©
£¨2£©£¬£¨4£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÍòÖÝÇøһģ£©ÒÑÖªº¯Êýf£¨x£©=|x2-2ax+b|£¨x¡ÊR£©£¬¸ø³öÏÂÁÐÃüÌ⣺
£¨1£©f£¨x£©²»¿ÉÄÜÊÇżº¯Êý£»
£¨2£©µ±f£¨0£©=f£¨2£©Ê±£¬f£¨x£©µÄͼÏó±Ø¹ØÓÚÖ±Ïßx=1¶Ô³Æ£»
£¨3£©Èôa2-b¡Ü0£¬Ôòf£¨x£©ÔÚÇø¼ä[a£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£»
£¨4£©f£¨x£©ÓÐ×îСֵb-a2£®
ÆäÖÐÕýÈ·µÄÃüÌâµÄÐòºÅÊÇ
£¨3£©
£¨3£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÃüÌ⣺¢Ùy=1ÊÇÃݺ¯Êý£»¢Úº¯Êýy=|x+2|-2xÔÚRÉÏÓÐ3¸öÁãµã£»¢Û
x-1
(x-2)¡Ý0
µÄ½â¼¯Îª[2£¬+¡Þ£©£»¢Üµ±n¡Ü0ʱ£¬Ãݺ¯Êýy=xnµÄͼÏóÓëÁ½×ø±êÖá²»Ïཻ£»ÆäÖÐÕýÈ·µÄÃüÌâÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ij°à¼¶ÓÐÄÐÉú20ÈË£¬Å®Éú30ÈË£¬´ÓÖгéÈ¡10¸öÈ˵ÄÑù±¾£¬Ç¡ºÃ³éµ½ÁË4¸öÄÐÉú¡¢6¸öÅ®Éú£®¸ø³öÏÂÁÐÃüÌ⣺
£¨1£©¸Ã³éÑù¿ÉÄÜÊǼòµ¥µÄËæ»ú³éÑù£»
£¨2£©¸Ã³éÑùÒ»¶¨²»ÊÇϵͳ³éÑù£»
£¨3£©¸Ã³éÑùÅ®Éú±»³éµ½µÄ¸ÅÂÊ´óÓÚÄÐÉú±»³éµ½µÄ¸ÅÂÊ£®
ÆäÖÐÕæÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèa1£¬a2£¬a3£¬a4ÊǵȲîÊýÁУ¬ÇÒÂú×ã1£¼a1£¼3£¬a3=4£¬Èôbn=2an£¬¸ø³öÏÂÁÐÃüÌ⣺£¨1£©b1£¬b2£¬b3£¬b4ÊÇÒ»¸öµÈ±ÈÊýÁУ» £¨2£©b1£¼b2£» £¨3£©b2£¾4£» £¨4£©b4£¾32£» £¨5£©b2b4=256£®ÆäÖÐÕæÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸