精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
25-a2
=1(a>0)
的左右两焦点分别为F1,F2,P是双曲线右支上的一点,Q点满足
PQ
•|
PF1
|=
PF1
•|
PF2
|
F1F2
F1P
上的投影的大小恰为|
F1P
|
,且它们的夹角为
π
6
,则a等于(  )
分析:由于Q点满足
PQ
•|
PF1
|=
PF1
•|
PF2
|
F1F2
F1P
上的投影的大小恰为|
F1P
|
,可求得F1PF2=
π
2
,进而利用双曲线的定义,可求a
解答:解:因为
PQ
•|
PF1
|=
PF1
•|
PF2
|
,所以
PQ
PF1
是一对同向向量,且|
PQ
|=|
PF2
|

又因为
F1F2
F1P
上的投影的大小恰为|
F1P
|

所以F1PF2=
π
2

在Rt△F1PF2中,∠PF1F2=
π
6
,|F1F2|=10,|PQ|=5
.又|F1Q|=|PF1|-|PQ|=2a,
所以2a=5
3
-5
,所以a=
5
3
-5
2

故选A
点评:本题的考点是双曲线的简单性质,主要考查双曲线的几何量的求解,关键是将向量的知识转化为数量关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
7
=1
,直线l过其左焦点F1,交双曲线的左支于A、B两点,且|AB|=4,F2为双曲线的右焦点,△ABF2的周长为20,则此双曲线的离心率e=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
的一个焦点与抛物线y2=4x的焦点重合,且该双曲线的离心率为
5
,则该双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(b>a>0)
,O为坐标原点,离心率e=2,点M(
5
3
)
在双曲线上.
(1)求双曲线的方程;
(2)若直线l与双曲线交于P,Q两点,且
OP
OQ
=0
.问:
1
|OP|2
+
1
|OQ|2
是否为定值?若是请求出该定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知直线l:kx-y+1+2k=0(k∈R),则该直线过定点
(-2,1)
(-2,1)

(2)已知双曲线
x2
a2
-
y2
b2
=1的一条渐近线方程为y=
4
3
x,则双曲线的离心率为
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)满足
a1
b
2
 |=0
,且双曲线的右焦点与抛物线y2=4
3
x
的焦点重合,则该双曲线的方程为
 

查看答案和解析>>

同步练习册答案