精英家教网 > 高中数学 > 题目详情
已知抛物线y2=2px(p>0),F为其焦点,l为其准线,过F任作一条直线交抛物线于A、B两点,A'、B'分别为A、B在l上的射影,M为A'B'的中点,给出下列命题:
①A'F⊥B'F;
②AM⊥BM;
③A'F∥BM;
④A'F与AM的交点在y轴上;
⑤AB'与A'B交于原点.
其中真命题的个数为( )
A.2个
B.3个
C.4个
D.5个
【答案】分析:①由于A,B在抛物线上,根据抛物线的定义可知A'F=AF,B'F=BF,从而由相等的角,由此可判断A'F⊥B'F;
②取AB中点C,利用中位线即抛物线的定义可得CM=,从而AM⊥BM;
③由②知,AM平分∠A′AF,从而可得A′F⊥AM,根据AM⊥BM,利用垂直于同一直线的两条直线平行,可得结论;
④取AB⊥x轴,则四边形AFMA'为矩形,则可得结论;
⑤取AB⊥x轴,则四边形ABB'A'为矩形,则可得结论.
解答:解:①由于A,B在抛物线上,根据抛物线的定义可知A'F=AF,B'F=BF,因为A′、B′分别为A、B在l上的射影,所以A'F⊥B'F;
②取AB中点C,则CM=,∴AM⊥BM;
③由②知,AM平分∠A′AF,∴A′F⊥AM,∵AM⊥BM,∴A'F∥BM;
④取AB⊥x轴,则四边形AFMA′为矩形,则可知A'F与AM的交点在y轴上;
⑤取AB⊥x轴,则四边形ABB'A'为矩形,则可知AB'与A'B交于原点
故选D.
点评:本题以抛物线为载体,考查抛物线的性质,解题的关键是合理运用抛物线的定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.
(1)求a的取值范围;
(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的焦点为F,准线为l.
(1)求抛物线上任意一点Q到定点N(2p,0)的最近距离;
(2)过点F作一直线与抛物线相交于A,B两点,并在准线l上任取一点M,当M不在x轴上时,证明:
kMA+kMBkMF
是一个定值,并求出这个值.(其中kMA,kMB,kMF分别表示直线MA,MB,MF的斜率)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•聊城一模)已知抛物线y2=2px(p>0),过点M(2p,0)的直线与抛物线相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0),M(2p,0),A、B是抛物线上的两点.求证:直线AB经过点M的充要条件是OA⊥OB,其中O是坐标原点.

查看答案和解析>>

同步练习册答案