精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x)满足f(1)=1,且f(x)的导函数f′(x)在上R恒有f(x)<
1
2
,则不等式f(x)<
x
2
+
1
2
的解集为(  )
A.(1,+∞)B.(-∞,1)C.(-1,1)D.(-∞,1)∪(1,+∞)
f(x)<
x
2
+
1
2
可化为f(x)-
x
2
-
1
2
<0,
令g(x)=f(x)-
x
2
-
1
2
,则g′(x)=f′(x)-
1
2

因为f(x)<
1
2
,所以g′(x)<0,所以g(x)在R上单调递减,
当x>1时,g(x)<g(1)=f(1)-
1
2
-
1
2
=0,即f(x)<
x
2
+
1
2

所以不等式f(x)<
x
2
+
1
2
的解集为(1,+∞).
故选A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案