【题目】已知定义在R上的函数y=f(x)满足:函数y=f(x+1)的图象关于直线x=﹣1对称,且当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立(f′(x)是函数f(x)的导函数),若a=0.76f(0.76),b=log 6f(log 6),c=60.6f(60.6),则a,b,c的大小关系是( )
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b
【答案】D
【解析】解:定义在R上的函数y=f(x)满足:函数y=f(x+1)的图象关于直线x=﹣1对称,可知函数是偶函数, 当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立(f′(x)是函数f(x)的导函数),可知函数y=xf(x)是增函数,x>0时是减函数;
0.76∈(0,1),60.6 (2,4),log 6≈log1.56∈(4,6).
所以a>c>b.
故选:D.
【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆E: =1(a>b>0)的焦距为2,且过点( , ).
(1)求椭圆E的方程;
(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M. ①设直线OM的斜率为k1 , 直线BP的斜率为k2 , 求证:k1k2为定值;
②设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cos(2x﹣φ)﹣ sin(2x﹣φ)(|φ|< )的图象向右平移 个单位后关于y轴对称,则f(x)在区间 上的最小值为( )
A.﹣1
B.
C.
D.﹣2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= +acosx,g(x)是f(x)的导函数.
(1)若f(x)在 处的切线方程为y= ,求a的值;
(2)若a≥0且f(x)在x=0时取得最小值,求a的取值范围;
(3)在(1)的条件下,当x>0时, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ax3﹣bex(a∈R,b∈R),且f(x)在x=0处的切线与x﹣y+3=0垂直.
(1)若函数f(x)在[ ,1]存在单调递增区间,求实数a的取值范围;
(2)若f′(x)有两个极值点x1 , x2 , 且x1<x2 , 求a的取值范围;
(3)在第二问的前提下,证明:﹣ <f′(x1)<﹣1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AB⊥AD,AD∥BC,AD= BC=2,E在BC上,且BE= AB=1,侧棱PA⊥平面ABCD.
(1)求证:平面PDE⊥平面PAC;
(2)若△PAB为等腰直角三角形. (i)求直线PE与平面PAC所成角的正弦值;
(ii)求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-5:不等式选讲]
已知函数f(x)=|ax﹣2|.
(Ⅰ)当a=2时,解不等式f(x)>x+1;
(Ⅱ)若关于x的不等式f(x)+f(﹣x)< 有实数解,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com