精英家教网 > 高中数学 > 题目详情

【题目】袋子里有完全相同的3只红球和4只黑球,今从袋子里随机取球.

)若有放回地取3次,每次取一个球,求取出2个红球1个黑球的概率;

)若无放回地取3次,每次取一个球,若取出每只红球得2分,取出每只黑球得1分,求得分的分布列和数学期望.

【答案】1108:343

2


3

4

5

6






【解析】试题分析:(1)由题可先算出取出红球和黑球的概率,再求取32个红球1个黑球的概率,可知为独立重复试验(有放回),运用独立重复试验的概率公式可求;(注意规范解题格式)

2)由题意(无放回),先分析出的可能取值,再分别求出对应的概率,可列出分布列(为超几何分布),代入期望公式可得。

试题解析:(1)从袋子里有放回地取3次球,相当于做了3次独立重复试验,每次试验取出红球的概率为,取出黑球的概率为,设事件取出2个红球1个黑球,则

2的取值有四个:3456,分布列为:

,


3

4

5

6






从而得分的数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数f(x)定义域中任意的x1 , x2(x1≠x2),有如下结论:
(1)f(x1+x2)=f(x1)f(x2
(2)f(x1x2)=f(x1)+f(x2
(3)
当f(x)=ex时,上述结论中正确结论的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点P是圆x2+y2=4上一动点,PD⊥x轴于点D,记满足 = + )的动点M的轨迹为Γ. (Ⅰ)求轨迹Γ的方程;
(Ⅱ)已知直线l:y=kx+m与轨迹F交于不同两点A,B,点G是线段AB中点,射线OG交轨迹Γ于点Q,且 ,λ∈R.
①证明:λ2m2=4k2+1;
②求△AOB的面积S(λ)的解析式,并计算S(λ)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知acosB+bcosA=2ccosC.
(1)求角C的大小;
(2)若a=5,b=8,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=a(x-lnx)+,a∈R.

(I)讨论f(x)的单调性;

(II)当a=1时,证明f(x)>f’(x)+对于任意的x∈[1,2] 恒成立。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的中心在原点,焦点分别在轴与轴上,它们有相同的离心率,并且的短轴为的长轴,的四个焦点构成的四边形面积是.

(1)求椭圆的方程;

(2)设是椭圆上非顶点的动点,与椭圆长轴两个顶点的连线分别与椭圆交于点.

(i)求证:直线斜率之积为常数;

(ii)直线与直线的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+bx2+2x在x=﹣1处取得极值,且在点(1,f(1))处的切线的斜率为2. (Ⅰ)求a,b的值:
(Ⅱ)若关于x的方程f(x)+x3﹣2x2﹣x+m=0在[ ,2]上恰有两个不相等的实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若直线与曲线恒相切于同一定点,求的方程;

2)当时, ,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2x3+3ax2+3bx+8在x=1及x=2时取得极值.
(1)求a,b的值;
(2)求曲线f(x)在x=0处的切线方程.

查看答案和解析>>

同步练习册答案