【答案】
分析:方法一(几何法)(1)由已知中EA⊥平面ABC,由线面垂直的性质可得ED⊥AC,结合AC⊥AB,由线面垂直的判定定理可得AC⊥平面EBD,再由线面垂直的性质得到AC⊥BD;
(2)由A、B、C在圆O的圆周上,且AB⊥AC,所以BC为圆O的直径,又由几何体正(主)视图、侧(左)视图的面积分别为10和12,我们易构造r,h的方程组,求出r,h的值后,结合(1)的结论,可得∠AHC为二面角A-BD-C的平面角,解Rt△BAD,即可得到二面角A-BD-C的平面角的大小.
方法二(向量法)(1)以点D为原点,DD
1、DE所在的射线分别为x轴、z轴建立如图的空间直角坐标系,分别求出AC,BD的方向向量,由两向量的数量积为0,即可得到AC⊥BD;
(2)分别求出平面ABD与平面BCD的法向量,代入向量夹角公式,即可得到二面角A-BD-C的平面角的大小.
解答:
方法一(几何法):
证明:(1)因为EA⊥平面ABC,AC?平面ABC,所以EA⊥AC,即ED⊥AC.
又因为AC⊥AB,AB∩ED=A,所以AC⊥平面EBD.
因为BD?平面EBD,所以AC⊥BD.(4分)
解:(2)因为点A、B、C在圆O的圆周上,且AB⊥AC,所以BC为圆O的直径.
设圆O的半径为r,圆柱高为h,根据正(主)视图、侧(左)视图的面积可得,

(6分)
解得

所以BC=4,

.(7分)
过点C作CH⊥BD于点H,连接AH,
由(1)知,AC⊥BD,AC∩CH=C,所以BD⊥平面ACH.
因为AH?平面ACH,所以BD⊥AH.
所以∠AHC为二面角A-BD-C的平面角.(9分)
由(1)知,AC⊥平面ABD,AH?平面ABD,
所以AC⊥AH,即△CAH为直角三角形.
在Rt△BAD中,

,AD=2,则

.
由AB×AD=BD×AH,解得

.
因为

.(13分)
所以∠AHC=60°.
所以二面角A-BD-C的平面角大小为60°.(14分)
方法二(向量法):
证明:(1)因为点A、B、C在圆O的圆周上,且AB⊥AC,所以BC为圆O的直径.
设圆O的半径为r,圆柱高为h,根据正(主)视图、侧(左)视图的面积可得,

(2分)
解得

所以BC=4,

.
以点D为原点,DD
1、DE所在的射线分别为x轴、z轴建立如图的空间直角坐标系

D-xyz,则D(0,0,0),D
1(4,0,0),A(0,0,2),B(2,2,2),C(2,-2,2),

,

.
因为

,
所以

.
所以AC⊥BD.(9分)
解:(2)设n=(x,y,z)是平面BCD的法向量,因为

,
所以

即

取z=-1,则n=(1,0,-1)是平面BCD的一个法向量.(11分)
由(1)知,AC⊥BD,又AC⊥AB,AB∩BD=B,所以AC⊥平面ABD.
所以

是平面ABD的一个法向量.(12分)
因为

,
所以

.
而

等于二面角A-BD-C的平面角,
所以二面角A-BD-C的平面角大小为60°.(14分)
点评:本题考查的知识点是二面角的平面角及求示,直线与平面垂直的性质,其中方法一中的关键是熟练掌握线面垂直与线线垂直的转化,结合二面角的定义,确定∠AHC为二面角A-BD-C的平面角,方法二的关键是建立空间坐标系,将直线的垂直及二面角问题转化为向量夹角问题.