精英家教网 > 高中数学 > 题目详情
11.枣庄市教育局基教科研本市高中学生的性别与阅读量、智商、视力、成绩这四个变量只剪断额关系,在全是高中学校随机抽查了20名男生、30名女生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是(  )
 阅读量
性别
 丰富 不丰富
 男 14 6
 女 4 26
 智商
性别
 偏高 正常
 男 8 12
 女 822
 视力

性别
好  差
 男 515 
 女 12 18
 成绩
性别
 不及格 及格
 男14 
 女 10 20
A.阅读量B.智商C.视力D.成绩

分析 根据表中数据,利用公式,求出X2,即可得出结论.

解答 解:表1:X2=$\frac{50×(14×26-4×6)^{2}}{18×32×20×30}$≈16.7;
表2:X2=$\frac{50×(8×22-12×8)^{2}}{16×34×20×30}$≈0.98;
表3:X2=$\frac{50×(5×18-12×15)^{2}}{17×33×20×30}$≈1.203;
表4:X2=$\frac{50×(6×20-10×14)^{2}}{16×34×20×30}$≈0.06,
∴阅读量与性别有关联的可能性最大,
故选:A.

点评 本题考查独立性检验的应用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.定义新运算“a※b”为a※b=$\left\{{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}}\right.$,例如1※2=1,3※2=2,则函数f(x)=sinx※cosx的值域是(  )
A.$[-1,\frac{{\sqrt{2}}}{2}]$B.$[0,\frac{{\sqrt{2}}}{2}]$C.[-1,1]D.$[-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的首项为a(a≠0),前n项和为Sn,且有Sn+1=tSn+a(t≠0),bn=Sn+1.
(1)求证:数列{an}是等比数列;
(2)当t≠1时,若cn=2+b1+b2+…+bn,求能够使数列{cn}为等比数列的所有数对(a,t).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知复数z的共轭复数是$\overline{z}$,z-$\overline{z}$=4i,z+$\overline{z}$=2,则z=1+2i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题中的真命题的个数是(  )
①a>b成立的一个充分不必要的条件是a>b+1;
②已知命题p∨q为真命题,则p∧q为真命题;
③命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
④命题“若x<-1,则x2-2x-3>0”的否命题为:“若x<-1,则x2-3x+2≤0”.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(B题)某射击运动员一次射击所得环数X的分布如下:
X8910
P0.30.50.2
现进行三次射击,以该运动员三次射击所得环数最高环数作为他的成绩,记为Y.
(Ⅰ)求该运动员三次都命中8环的概率;
(Ⅱ)求Y的分布及平均值(期望)EY.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设定义在R上的偶函数f(x)满足f(x+2)=-f(x),且当x∈(-2,0]时,f(x)=log2(2-x)+2,则 f(2014.5)=log27+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,A,B,C所对的边分别为a,b,c.若bcosC+ccosB=csinA,则$\frac{a+b}{c}$的最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(Ⅰ) 完成2×2列联表;

正误
年龄
正确错误合计
20~30
30~40
合计
(Ⅱ)判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由.(下面的临界值表供参考)
P(Χ2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(参考公式:${Χ^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$,n=n1++n2++n+1+n+2

查看答案和解析>>

同步练习册答案