精英家教网 > 高中数学 > 题目详情

 (本题16分)如图,在城周边已有两条公路在点O处交汇,且它们的夹角为.已知与公路夹角为.现规划在公路上分别选择两处作为交汇点(异于点O)直接修建一条公路通过城.设.

(1)   求出关于的函数关系式并指出它的定义域;

(2)   试确定点A,B的位置,使△的面积最小.

 

【答案】

解:(1).

(2)当OA=4,OB=时,使△的面积最小.

【解析】

面积相等法,建立的关系式,,根据

,分子分母的x的次数不等,要转化为x的次数相等,然后用均值定理。

解:(1)

     整理得

     过C作OB平行线与OA交于D,

     故.定义域为.

(2),

   

    当且仅当时取等.

    所以当时,有最小值为.

答:当OA=4,OB=时,使△的面积最小.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题16分)

如图,F是抛物线的焦点,Q是准线与轴的交点,斜率为的直线经过点Q.

(1)当K取不同数值时,求直线与抛物线交点的个数;

(2)如直线与抛物线相交于A、B两点,求证:是定值

(3)在轴上是否存在这样的定点M,对任意的过点Q的直线,如与抛物线相交于A、B两点,均能使得为定值,有则找出满足条

件的点M;没有,则说明理由.

查看答案和解析>>

科目:高中数学 来源:2010届上海市虹口区高三第二次模拟考试数学卷 题型:解答题

(本题16分)
如图所示,某人在斜坡P处仰视正对面山顶上一座铁塔,塔高AB=80米,塔所在山高OA=220米,OC=200米,观测者所在斜坡CD近似看成直线,斜坡与水平面夹角为
(1)以射线OC为轴的正向,OB为轴正向,建立直角坐标系,求出斜坡CD所在直线方程;
(2)当观察者P视角∠APB最大时,求点P的坐标(人的身高忽略不计).

查看答案和解析>>

科目:高中数学 来源:江苏省09-10学年度第一学期第三次月考高一数学 题型:解答题

(本题16分)如图,某大风车的半径为2米,每12秒沿逆时针方向旋转一周,它的最底点离地面1米,风车圆周上一点A从最底点开始,运动t秒后与地面距离为h米,

(1)求函数h=f(t)的关系式, 并在给出的方格纸上用五点作图法作出h=f(t)在一个周期内的图象(要列表,描点);

(2) A从最底点开始, 沿逆时针方向旋转第一周内,有多长时间离地面的高度超过4米?

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010届上海市虹口区高三第二次模拟考试数学卷 题型:解答题

(本题16分)

如图,F是抛物线的焦点,Q是准线与轴的交点,斜率为的直线经过点Q.

(1)当K取不同数值时,求直线与抛物线交点的个数;

(2)如直线与抛物线相交于A、B两点,求证:是定值

(3)在轴上是否存在这样的定点M,对任意的过点Q的直线,如与抛物线相交于A、B两点,均能使得为定值,有则找出满足条

件的点M;没有,则说明理由.

 

查看答案和解析>>

同步练习册答案