精英家教网 > 高中数学 > 题目详情
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的图象与y轴交于点(0,
3
),在y轴右边到y轴最近的最高点坐标为(
π
12
,2),则不等式f(x)>1的解集是(  )
A、(kπ-
π
6
,kπ+
5
6
π),k∈Z
B、(kπ-
π
12
,kπ+
5
6
π),k∈Z
C、(kπ-
π
16
,kπ+
π
4
),k∈Z
D、(kπ-
π
12
,kπ+
π
4
),k∈Z
考点:正弦函数的图象
专题:三角函数的图像与性质
分析:由函数的图象的顶点坐标求出A,由特殊点的坐标求出 φ,由五点法作图求出ω的值,可得函数的解析式;再结合正弦函数的图象特征求得不等式f(x)>1的解集.
解答: 解:由在y轴右边到y轴最近的最高点坐标为(
π
12
,2),可得A=2.
再根据的图象与y轴交于点(0,
3
),可得2sinφ=
3
,结合|φ|<
π
2
,∴φ=
π
3

由五点法作图可得ω×
π
12
+
π
3
=
π
2
,求得ω=2,∴f(x)=2sin(2x+
π
3
).
不等式f(x)>1,即 sin(2x+
π
3
)>
1
2
,∴2kπ+
π
6
<2x+
π
3
<2kπ+
6
,k∈z,
求得x∈(kπ-
π
12
,kπ+
π
4
),k∈Z,
故选:D.
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由特殊点的坐标求出φ,由五点法作图求出ω的值,正弦函数的图象,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

集合A≠∅,且A∩B=∅,则B=∅.
 
(判断对错)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆的圆心为(0,2),半径为3,则圆的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1=3an+1.
(Ⅰ)求{an}的通项公式;
(Ⅱ)证明:
1
a1
+
1
a2
+…+
1
an
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
A
4
n
=40
C
5
n
,设f(x)=(x-
1
3x
n
(1)求n的值;
(2)f(x)的展开式中的哪几项是有理项(回答项数即可);
(3)求f(x)的展开式中系数最大的项和系数最小的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

当a为何值时,直线y=x与对数函数y=logax的图象相切,求切点坐标及切点处的法线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosx-(1-2sin2x)(sin4x-cos4x).
(1)求f(x)的值域;
(2)若x∈[0,π],求方程f(x)=1的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图由若干个相同的小立方体组成的几何体的俯视图,其中小立方体中的数字表示相应位置的小立方体的个数,则该几何体的左视图为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:x2-
y2
3
=1的离心率为e,若p=e,则抛物线E:x2=2py的焦点F到双曲线C的渐近线的距离为(  )
A、
3
B、1
C、
3
2
D、
1
2

查看答案和解析>>

同步练习册答案