精英家教网 > 高中数学 > 题目详情

【题目】甲、乙、丙三名音乐爱好者参加某电视台举办的演唱技能海选活动,在本次海选中有合格和不合格两个等级.若海选合格记1分,海选不合格记0分.假设甲、乙、丙海选合格的概率分别为,他们海选合格与不合格是相互独立的.

1)求在这次海选中,这三名音乐爱好者至少有一名海选合格的概率;

2)记在这次海选中,甲、乙、丙三名音乐爱好者所得分之和为随机变量,求随机变量的分布列和数学期望

【答案】1

2的分布列为


0

1

2

3






【解析】

试题分析:概率与统计类解答题是高考常考的题型,以排列组合和概率统计等知识为工具,主要考查对概率事件的判断及其概率的计算,随机变量概率分布列的性质及其应用:对于(1),从所求事件的对立事件的概率入手即;对于(2),根据的所有可能取值:0123;分别求出相应事件的概率P,列出分布列,运用数学期望计算公式求解即可.

1)记甲海选合格为事件A,乙海选合格为事件B,丙海选合格为事件C,甲、乙、丙至少有一名海选合格为事件E.

2的所有可能取值为0,1,2,3

所以的分布列为


0

1

2

3






练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.
(1)求证:PD⊥平面ABE;
(2)若F为AB中点, ,试确定λ的值,使二面角P﹣FM﹣B的余弦值为-

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足是数列的前项的和.

(1)求数列的通项公式

(2)若成等差数列,18,成等比数列求正整数的值

(3)是否存在使得为数列中的项若存在求出所有满足条件的的值若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平行六面体中,

求证:(1)

(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F(1,0),点A是直线l1:x=﹣1上的动点,过A作直线l2 , l1⊥l2 , 线段AF的垂直平分线与l2交于点P.
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)若点M,N是直线l1上两个不同的点,且△PMN的内切圆方程为x2+y2=1,直线PF的斜率为k,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.?x,y∈R,若x+y≠0,则x≠1且y≠﹣1
B.a∈R,“ ”是“a>1”的必要不充分条件
C.命题“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0”
D.设随机变量X~N(1,52),若P(X<0)=P(X>a﹣2),则实数a的值为2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场经销某商品,顾客可以采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是,经销件该产品,若顾客采用一次性付款,商场获得利润元;若顾客采用分期付款,商场获得利润元.

(Ⅰ)求位购买商品的顾客中至少有位采用一次性付款的概率.

(Ⅱ)若位顾客每人购买件该商品求商场获得利润不超过元的概率.

(Ⅲ)若位顾客每人购买件该商品,设商场获得的利润为随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为的圆,满足下列条件:圆心位于轴正半轴上,与直线相切且被轴截得的弦长为,圆的面积小于13.

(Ⅰ)求圆的标准方程;

(Ⅱ)设过点的直线与圆交于不同的两点,以为邻边作平行四边形.是否存在这样的直线,使得直线恰好平行?如果存在,求出的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在圆心角为,半径为的扇形铁皮上截取一块矩形材料,其中点为圆心,点在圆弧上,点在两半径上,现将此矩形铁皮卷成一个以为母线的圆柱形铁皮罐的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱形铁皮罐的容积为.

(1)求圆柱形铁皮罐的容积关于的函数解析式,并指出该函数的定义域;

(2)当为何值时,才使做出的圆柱形铁皮罐的容积最大?最大容积是多少? (圆柱体积公式:为圆柱的底面枳,为圆柱的高)

查看答案和解析>>

同步练习册答案