精英家教网 > 高中数学 > 题目详情
13.设平面向量$\overrightarrow{a}$=(cosα,sinα)(0≤a≤2π),$\overrightarrow{b}$=(-$\frac{1}{2},\frac{\sqrt{3}}{2}$),且$\overrightarrow{a}$与$\overrightarrow{b}$不共线.
(1)求证:向量$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$与垂直;
(2)若两个向量$\sqrt{3}$$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\sqrt{3}$$\overrightarrow{b}$的模相等,求角α.

分析 (1)利用两个向量的坐标形式的运算,两个向量的数量积公式,求得($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=0,可得($\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$).
(2)由条件求得$\overrightarrow{a}•\overrightarrow{b}$=0,即sin(α-$\frac{π}{6}$)=0,结合0≤a≤2π,求得α的值.

解答 解:(1)∵向量$\overrightarrow{a}$=(cosα,sinα)(0≤a≤2π),$\overrightarrow{b}$=(-$\frac{1}{2},\frac{\sqrt{3}}{2}$),
∴|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=${\overrightarrow{a}}^{2}$-${\overrightarrow{b}}^{2}$=0,∴($\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$).
(2)∵已知两个向量$\sqrt{3}$$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\sqrt{3}$$\overrightarrow{b}$的模相等,
∴${(\sqrt{3}\overrightarrow{a}+\overrightarrow{b})}^{2}$=${(\overrightarrow{a}-\sqrt{3}\overrightarrow{b})}^{2}$,∴3${\overrightarrow{a}}^{2}$+${\overrightarrow{b}}^{2}$+2$\sqrt{3}$•$\overrightarrow{a}•\overrightarrow{b}$=${\overrightarrow{a}}^{2}$+3${\overrightarrow{b}}^{2}$-2$\sqrt{3}$•$\overrightarrow{a}•\overrightarrow{b}$,
再结合|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,可得$\overrightarrow{a}•\overrightarrow{b}$=0,即$\frac{\sqrt{3}}{2}sinα$-$\frac{1}{2}$cosα=sin(α-$\frac{π}{6}$)=0,
∴α-$\frac{π}{6}$=kπ,k∈Z.
∵0≤a≤2π,∴α=$\frac{π}{6}$,或α=$\frac{7π}{6}$.

点评 本题主要考查两个向量垂直的判定,两个向量的坐标形式的运算,两个向量的数量积公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知各项均为正数的数列{an}的前n项和为Sn,且对任意的n∈N*,都有2Sn=n2+n.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ) 数列{bn}满足b1=1,2bn+1-bn=0(n∈N*),若cn=anbn,求数列{cn}的前n项和为Tn
(Ⅲ)在(Ⅱ)的条件下,问是否存在整数m,使得对任意的正整数n,都有m-2<Tn<m+2,若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=ex+4x-3的零点为x0,则x0所在的区间是(  )
A.(0,$\frac{1}{4}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.($\frac{1}{2}$,$\frac{3}{4}$)D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.tan$\frac{2π}{3}$=(  )
A.-$\sqrt{3}$B.-$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如果函数f(x)在区域D上满足:?a,b,c∈D,f(a),f(b),f(c)为一个三角形的三边长,则称f(x)为“区域D上的三角形函数”.已知函数f(x)=kx+2是“[1,4]上的三角形函数”,则实数k的取值范围是(-$\frac{2}{7}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=x2+2x-3,x∈[-2,1],函数f(x)的值域为[-4,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.经过市场调查,某门市部的一种小商品在过去的20天内的销售量(件)与价格(元)均为时间t (天)的函数,且日销售量近似满足g(t)=80-2t (件),而日销售量价格近似满足函数f(t),且f(t)的图象为如图所示的两线段AB,BC.
(1)直接写出f(t)的解析式
(2)求出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;
(3)求该种商品的日销售额y的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若关于x的方程log${\;}_{\frac{1}{2}}$|x+a|=|2x-1|有两个不同的负数解,则实数a的取值范围是a>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=log2(x+1)-2.
(1)若f(x)>0,求x的取值范围.
(2)若x∈(-1,3],求f(x)的值域.

查看答案和解析>>

同步练习册答案