精英家教网 > 高中数学 > 题目详情
2.若关于x的方程log${\;}_{\frac{1}{2}}$|x+a|=|2x-1|有两个不同的负数解,则实数a的取值范围是a>1.

分析 画出函数图象,结合图象求出a的范围即可.

解答 解:画出函数y=log${\;}_{\frac{1}{2}}$|x+a|和y=|2x-1|的图象,如图示:

结合图象:a>1,
故答案为:a>1.

点评 本题考查了函数的交点问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在△ABC中,如果(a+b+c)(b+c-a)=3bc,那么角A=(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设平面向量$\overrightarrow{a}$=(cosα,sinα)(0≤a≤2π),$\overrightarrow{b}$=(-$\frac{1}{2},\frac{\sqrt{3}}{2}$),且$\overrightarrow{a}$与$\overrightarrow{b}$不共线.
(1)求证:向量$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$与垂直;
(2)若两个向量$\sqrt{3}$$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\sqrt{3}$$\overrightarrow{b}$的模相等,求角α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在三棱锥P-ABC中,△ABC是等边三角形,D是AC的中点,PA=PC,二面角P-AC-B的大小为60°;
(1)求证:平面PBD⊥平面PAC;
(2)求AB与平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{c}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,若点D满足$\overrightarrow{CD}$=2$\overrightarrow{DB}$,则$\overrightarrow{AD}$=(  )
A.$\frac{2}{3}$$\overrightarrow{b}$+$\frac{1}{3}$$\overrightarrow{c}$B.$\frac{2}{3}$$\overrightarrow{b}$+$\frac{5}{3}$$\overrightarrow{c}$C.$\frac{1}{3}$$\overrightarrow{b}$+$\frac{2}{3}$$\overrightarrow{c}$D.$\frac{2}{3}$$\overrightarrow{b}$-$\frac{1}{3}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若直线过点($\sqrt{3}$,-3)且倾斜角为30°,则该直线的方程为y=$\frac{{\sqrt{3}}}{3}$x-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数y=log3x与y=3-x的图象的交点为(x0,y0),则x0所在的区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC上的点,AD=AE,F是BC的中点,AF与DE交于点G,△ABF沿AF折起,得到如图2所示的三棱锥A-BCF,其中BC=$\frac{{\sqrt{2}}}{2}$.
(1)求证:平面DEG∥平面BCF;
(2)若D,E为AB,AC上的中点,H为BC中点,求异面直线AB与FH所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.高速公路为人民出行带来极大便利,但由于高速上车速快,一旦出事故往往导致生命或财产的重大损失,我国高速公路最高限速120km/h,最低限速60km/h.
(Ⅰ)当驾驶员以120 千米/小时速度驾车行驶,驾驶员发现前方有事故,以原车速行驶大约需要0.9秒后才能做出紧急刹车,做出紧急刹车后,车速依v(t)=$\frac{100}{3(t+1)}$-$\frac{5}{3}$t(t:秒,v(t):米/秒)规律变化直到完全停止,求驾驶员从发现前方事故到车辆完全停止时,车辆行驶的距离;(取ln5=1.6)
(Ⅱ)国庆期间,高速免小车通行费,某人从襄阳到曾都自驾游,只需承担油费.已知每小时油费v(元)与车速有关,w=$\frac{{v}^{2}}{250}$+40(v:km/h),高速路段必须按国家规定限速内行驶,假定高速上为匀速行驶,高速上共行驶了S千米,当高速上行驶的这S千米油费最少时,求速度v应为多少km/h?

查看答案和解析>>

同步练习册答案