精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xOy中,“ab>0”是“方程ax2+by2=1的曲线为椭圆”的________条件(填写“充分不必要”、“必要不充分”、“充分必要”和“既不充分也不必要”之一).

必要不充分
分析:由“ab>0”,不能判断“方程ax2+by2=1表示椭圆”,“方程ax2+by2=1表示椭圆”可推得“ab>0”,由充要条件的判断可得答案.
解答:∵由“ab>0”,不能判断“方程ax2+by2=1表示椭圆”,
例如a<0,b<0时,“方程ax2+by2=1不表示椭圆”.
“方程ax2+by2=1表示椭圆”可推出“ab>0”,
∴“ab>0”是“方程ax2+by2=1表示椭圆”的必要不充分条件.
故答案为:必要不充分.
点评:本题考查充要条件的判断,用好椭圆的定义和性质是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x-2y=0,则它的离心率为(  )
A、
5
B、
5
2
C、
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l的参数方程为
x=2t-1 
y=4-2t .
(参数t∈R),以直角坐标原点为极点,x轴的正半轴为极轴建立相应的极坐标系.在此极坐标系中,若圆C的极坐标方程为ρ=4cosθ,则圆心C到直线l的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程) 在平面直角坐标系xOy中,圆C的参数方程为
x=2cosθ
y=2sinθ+2
 (参数θ∈[0,2π)),若以原点为极点,射线ox为极轴建立极坐标系,则圆C的圆心的极坐标为
 
,圆C的极坐标方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东)在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A、B两点,则弦AB的长等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(Ⅰ)若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,求sin(α+β)的值;
(Ⅱ) 若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

同步练习册答案