分析 对于p:f′(x)=$\frac{{e}^{x}-(x-2){e}^{x}}{({e}^{x})^{2}}$=$\frac{3-x}{{e}^{x}}$,可得当x>3时,函数f(x)单调递减;当x<3时,函数f(x)单调递增.由于函数f(x)在(m,2m)(m>0)上是单调函数,可得m≥3或0<2m≤3,解得m范围.对于q:由x2-3x≤0解得0≤x≤3,
由x2-2mx-3m2≤0化为(x+m)(x-3m)≤0,对m分类讨论:当m>0时,解得-m≤x≤3m;当m=0时,解得x=0;当m<0时,解得3m≤x≤-m.根据“x2-3x≤0”是“x2-2mx-3m2≤0”的充分不必要条件,可得$\left\{\begin{array}{l}{m>0}\\{3≤3m}\end{array}\right.$或$\left\{\begin{array}{l}{m<0}\\{3≤-m}\end{array}\right.$.若p∨q为真,p∧q为假,则p与q必然一真一假.解出即可.
解答 解:对于p:函数f(x)=$\frac{x-2}{{e}^{x}}$,f′(x)=$\frac{{e}^{x}-(x-2){e}^{x}}{({e}^{x})^{2}}$=$\frac{3-x}{{e}^{x}}$,可得当x>3时,f′(x)<0,函数f(x)单调递减;当x<3时,f′(x)>0,函数f(x)单调递增.
∵函数f(x)在(m,2m)(m>0)上是单调函数,∴m≥3或0<2m≤3,解得m≥3或$0<m≤\frac{3}{2}$.
对于q:由x2-3x≤0解得0≤x≤3,
由x2-2mx-3m2≤0化为(x+m)(x-3m)≤0,当m>0时,解得-m≤x≤3m;当m=0时,解得x=0;当m<0时,解得3m≤x≤-m.
∵“x2-3x≤0”是“x2-2mx-3m2≤0”的充分不必要条件,∴$\left\{\begin{array}{l}{m>0}\\{3≤3m}\end{array}\right.$或$\left\{\begin{array}{l}{m<0}\\{3≤-m}\end{array}\right.$,
解得m≥1或m≤-3.
若p∨q为真,p∧q为假,则p与q必然一真一假.
∴$\left\{\begin{array}{l}{m≥3或0<m≤\frac{3}{2}}\\{-3<m<1}\end{array}\right.$或$\left\{\begin{array}{l}{\frac{3}{2}<m<3或m≤0}\\{m≤-3或m≥1}\end{array}\right.$,
解得0<m<1,或$\frac{3}{2}<m<3$,或m≤-3.
∴实数m的取值范围是m≤-3,或0<m<1,或$\frac{3}{2}$<m<3.
点评 本题考查了利用导数研究函数的单调性、一元二次不等式解法、简易逻辑的判定方法,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖 | |
| B. | 因为正方形的对角线互相平分且相等,所以对角线互相平分且相等的四边形是正方形 | |
| C. | 因为a>b,a<c,所以a-b<a-c | |
| D. | 因为a>b,c>d,所以a-d>b-c |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30 | B. | 0 | ||
| C. | 15 | D. | 一个与p 有关的代数式 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16 | B. | $\frac{1}{16}$ | C. | 8 | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com