精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sinωxcosωx+ cos2ωx﹣ (ω>0),直线x=x1 , x=x2是y=f(x)图象的任意两条对称轴,且|x1﹣x2|的最小值为
(1)求f(x)的表达式;
(2)将函数f(x)的图象向右平移 个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间 上有且只有一个实数解,求实数k的取值范围.

【答案】
(1)解: ,由题意知,最小正周期 ,又 ,所以ω=2,

.)


(2)解:将f(x)的图象向右平移个 个单位后,得到 y= = 的图象,

再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到 的图象,

,∵ ,∴ ,g(x)+k=0,在区间 上有且只有一个实数解,

即函数y=g(x)与y=﹣k在区间 上有且只有一个交点,由正弦函数的图象可知 或﹣k=1

,或k=﹣1


【解析】(1)利用三角函数的恒等变换把函数f(x)的解析式化为 ,根据周期求出ω=2,从而得到 .(2)将f(x)的图象向右平移个 个单位后,得到 y= = 的图象,再将所得图象所有点的横坐标伸长到原来的2倍得到 的图象,可得 ,函数y=g(x)与y=﹣k在区间 上有且只有一个交点,由正弦函数的图象可得实数k的取值范围.
【考点精析】根据题目的已知条件,利用函数y=Asin(ωx+φ)的图象变换的相关知识可以得到问题的答案,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某县城出租车的收费标准是:起步价是元(乘车不超过千米);行驶千米后,每千米车费1.2元;行驶千米后,每千米车费1.8元.

(1)写出车费与路程的关系式;

(2)一顾客计划行程千米,为了省钱,他设计了三种乘车方案:

①不换车:乘一辆出租车行千米

②分两段乘车:先乘一辆车行千米,换乘另一辆车再行千米;

③分三段乘车:每乘千米换一次车.

问哪一种方案最省钱.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为 ,且椭圆E上一点到两个焦点距离之和为4;l1 , l2是过点P(0,2)且互相垂直的两条直线,l1交E于A,B两点,l2交E交C,D两点,AB,CD的中点分别为M,N.
(1)求椭圆E的方程;
(2)求l1的斜率k的取值范围;
(3)求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C的参数方程 (φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系;
(1)设M(x,y)是圆C上的动点,求m=3x+4y的取值范围;
(2)求圆C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,BC=2, ,若 ,则 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,则满足f(f(a))=2fa的a的取值范围是(
A.[ ,1]
B.[0,1]
C.[ ,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三条直线3x+2y+6=0,2x-3m2y+18=0和2mx-3y+12=0围成直角三角形,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网上购物逐步走进大学生活,某大学学生宿舍4人积极参加网购,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为5或6的人去淘宝网购物,掷出点数小于5的人去京东商场购物,且参加者必须从淘宝和京东商城选择一家购物.
(1)求这4人中恰有1人去淘宝网购物的概率;
(2)用ξ、η分别表示这4人中去淘宝网和京东商城购物的人数,记X=ξη,求随机变量X的分布列与数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题方程表示双曲线命题不等式的解集是. 为假 为真的取值范围.

【答案】

【解析】试题分析:由命题方程表示双曲线,求出的取值范围,由命题不等式的解集是,求出的取值范围,由为假, 为真,得出一真一假,分两种情况即可得出的取值范围.

试题解析:

范围为

型】解答
束】
18

【题目】如图,设是圆上的动点轴上的投影 上一点.

1)当在圆上运动时求点的轨迹的方程

2)求过点且斜率为的直线被所截线段的长度.

查看答案和解析>>

同步练习册答案