精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=$\frac{1}{2}$x2+alnx(a∈R).
(Ⅰ)若a=-1时,求函数f(x)的单调区间;
(Ⅱ)当x>1时,f(x)>lnx恒成立,求a的取值范围.

分析 (Ⅰ)先求出其导函数,让其大于0求出增区间,小于0求出减区间即可;
(Ⅱ)问题转化为a-1>${(\frac{-{\frac{1}{2}x}^{2}}{lnx})}_{max}$令g(x)=$\frac{-{\frac{1}{2}x}^{2}}{lnx}$,求出其导函数,利用导函数研究出其极大值,从而求出a的范围即可.

解答 解:(Ⅰ)当a=-1时,f(x)=$\frac{1}{2}$x2-lnx,
f′(x)=x-$\frac{1}{x}$,
令f′(x)>0,解得x>1,
所以f(x)的单调增区间为(1,+∞);
令f′(x)<0,解得0<x<1,
所以f(x)的单调减区间为(0,1).
(Ⅱ)依题意f(x)-lnx>0,即$\frac{1}{2}$x2+alnx-lnx>0,
所以(a-1)lnx>-$\frac{1}{2}$x2
∵x>1,∴lnx>0,
∴a-1>$\frac{-{\frac{1}{2}x}^{2}}{lnx}$,∴a-1>${(\frac{-{\frac{1}{2}x}^{2}}{lnx})}_{max}$
令g(x)=$\frac{-{\frac{1}{2}x}^{2}}{lnx}$,则g′(x)=$\frac{-xlnx+\frac{1}{2}x}{{(lnx)}^{2}}$,
令g′(x)=0,得x=$\sqrt{e}$,
则x,g′(x),g(x)的变化如下:

x(1,$\sqrt{e}$)$\sqrt{e}$($\sqrt{e}$,+∞)
g′(x)+0-
g(x)极大值-e
∴g(x)max=-e,∴a-1>-e,即a>1-e.

点评 本题第二问考查利用导函数来研究函数的极值.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点分别为F1,F2,点D是椭圆C上一动点当△DF1F2的面积取得最大值1时,△DF1F2为直角三角形.
(1)椭圆C的方程.
(2)已知点P是椭圆C上的一点,则过点P(x0,y0)的切线的方程为$\frac{x{x}_{0}}{{a}^{2}}$+$\frac{y{y}_{0}}{{b}^{2}}$=1.过直线l:x=2上的任意点M引椭圆C的两条切线,切点分别为A,B,求证:直线AB恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{6}}{3}$,过点A(0,-b)和B(a,0)的直线与原点的距离为$\frac{\sqrt{3}}{2}$.
(1)求椭圆的方程.
(2)已知定点E(-1,0),是否存在k的值,使得直线y=kx+2(k≠0)与椭圆交于C、D两点.且EC⊥ED,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且当x∈[-1,1]时,f(x)=|x|,函数g(x)=$\left\{\begin{array}{l}{sinπx,x≥0}\\{{2}^{x},x<0}\end{array}\right.$,则函数h(x)=f(x)-g(x)在区间[-5,5]上的零点的个数为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知3x2+2y2≤6,求2x+y的最大值
(2)求不等式|x-1|+|x+2|<5的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若集合A={0,1,2,3,4,6},集合B={y|y=2x,x∈A},则A∩B的元素个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=x4+4x3+ax2-4x+1的图象恒在x轴上方,则实数a的取值范围是(  )
A.(2,+∞)B.(1,+∞)C.($\frac{\sqrt{3}-1}{2}$,+∞)D.($\frac{\sqrt{2}-1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设f(x)=ax5+bx3+cx+7(其中a,b,c为常数,x∈R),若f(-2011)=-17,则f(2011)=31.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=1n(1+x)-$\frac{x(x+a)}{a(x+1)}$(a>1).
(1)讨论函数f(x)的单调性;
(2)证明:(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{3}^{2}}$)(1+$\frac{1}{{4}^{2}}$)…(1+$\frac{1}{{n}^{2}}$)<e${\;}^{\frac{3}{4}}$(n∈N*,n≥2).

查看答案和解析>>

同步练习册答案