【题目】已知函数, (, 为自然对数的底数).
(1)试讨论函数的极值情况;
(2)证明:当且时,总有.
【答案】(1)见解析;(2)见解析.
【解析】试题分析:(1)求定义域内的所有根;判断的根左右两侧值的符号即可得结果;(2)当时, ,研究函数的单调性,两次求导,可证明在内为单调递增函数,进而可得当时, ,即可得结果.
试题解析:(1)的定义域为,
.
①当时, ,故在内单调递减, 无极值;
②当时,令,得;令,得.
故在处取得极大值,且极大值为, 无极小值.
(2)证法一:当时, .
设函数 ,
则.记,
则.
当变化时, , 的变化情况如下表:
由上表可知,
而 ,
由,知,
所以,
所以,即.
所以在内为单调递增函数.
所以当时, .
即当且时, .
所以当且时,总有.
证法二:当时, .
因为且,故只需证.
当时, 成立;
当时, ,即证.
令,则由,得.
在内, ;
在内, ,
所以.
故当时, 成立.
综上得原不等式成立.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知圆的参数方程为(为参数),以直角坐标系的原点为极点, 轴的非负半轴为极轴,建立极坐标系,直线的极坐标方程为.
(Ⅰ)将圆的参数方程化为普通方程,再化为极坐标方程;
(Ⅱ)若点在直线上,当点到圆的距离最小时,求点的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一组数据x1 , x2 , x3 , x4 , x5的平均数是2,方差是 ,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣3,3x4﹣2,3x5﹣2的平均数和方差分别为( )
A.2,
B.4,3
C.4,
D.2,1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=x+ 有如下性质:如果常数t>0,那么该函数在 上是减函数,在 上是增函数.
(1)已知f(x)= ,x∈[﹣1,1],利用上述性质,求函数f(x)的单调区间和值域;
(2)对于(1)中的函数f(x)和函数g(x)=﹣x﹣2a,若对任意x1∈[﹣1,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)的离心率为 ,左焦点为F(﹣1,0),过点D(0,2)且斜率为k的直线l交椭圆于A,B两点.
(1)求椭圆C的标准方程;
(2)求k的取值范围;
(3)在y轴上,是否存在定点E,使 恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣(a+2)x+alnx.
(1)当a=1时,求函数f(x)的极值;
(2)设定义在D上的函数y=g(x)在点P(x0 , y0)处的切线方程为l:y=h(x).当x≠x0时,若 >0在D内恒成立,则称P为函数y=g(x)的“转点”.当a=8时,问函数y=f(x)是否存在“转点”?若存在,求出“转点”的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)对任意的x∈R都有f′(x)>f(x)恒成立,则( )
A.3f(ln2)>2f(ln3)
B.3f(ln2)=2f(ln3)
C.3f(ln2)<2f(ln3)
D.3f(ln2)与2f(ln3)的大小不确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线,曲线.以极点为坐标原点,极轴为轴正半轴建立平面直角坐标系,曲线的参数方程为(为参数).
(1)求的直角坐标方程;
(2)与交于不同的四点,这四点在上排列顺次为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com