精英家教网 > 高中数学 > 题目详情
已知有两个数列{an},{bn},它们的前n项和分别记为Sn,Tn,且数列{an}是各项均为正数的等比数列,Sm=26,前m项中数值最大的项的值为18,S2m=728,又
(I)求数列{an},{bn}的通项公式.
(II)若数列{cn}满足cn=bnan,求数列{cn}的前n项和Pn
【答案】分析:(1)数列{an},建立数列{an}中关于首项a1 和公比q的方程组,解方程组得数列{an}的通项公式(但不要忘记对公比为q是否等于1的讨论),利用求出数列{bn}的通项公式;
(2)可直接利用错位相减法求数列{cn}的前n项和Pn
解答:(本小题满分14分)
解:(Ⅰ)设等比数列{an}的公比为q,∵an>0,∴q>0
若q=1时  Sm=ma1S2m=2ma1,此时2Sm=S2m,而已知  Sm=26,S2m=728,∴2Sm≠S2m,∴q=1不成立…(1分)
若q≠1,由得 …(2分)
(1)÷(2)得:1+qm=28∴qm=27…(3分)
∵qm=27>1∴q>1   
∴前m项中am最大∴am=18…(4分)
由 得,    即
及qm=27代入(1)式得   
解得q=3  
 把q=3代入得a1=2,所以 …(7分)

(1)当n=1时 b1=T1=2
(2)当 n≥2时 =4n-2
∵b1=2适合上式∴bn=4n-2…(9分)
(Ⅱ)由(1)得 
,dn的前n项和为Qn,显然Pn=4Qn…①∴…..②
…(11分)
①-②得:-2Qn=1+2×31+2×32+2×33+…2×3n-1-(2n-1)×3n
==-2-(2n-2)×3n…(13分)

…(14分)
点评:本题是一道很好的数列综合题,是历年高考中常考的一类数列题.对解题方法的熟练应用要求较高.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知各项均为正数的两个数列{an}和{bn}满足:an+1=
anbn
an2+bn2
,n∈N*
(1)求证:当n≥2时,有an
2
2
成立;
(2)设bn+1=
bn
an
,n∈N*,求证:数列{(
bn
an
)
2
}
是等差数列;
(3)设bn+1=anbn,n∈N*,试问{an}可能为等比数列吗?若可能,请求出公比的值,若不可能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河东区二模)已知有两个数列{an},{bn},它们的前n项和分别记为Sn,Tn,且数列{an}是各项均为正数的等比数列,Sm=26,前m项中数值最大的项的值为18,S2m=728,又Tn=2n2
(I)求数列{an},{bn}的通项公式.
(II)若数列{cn}满足cn=bnan,求数列{cn}的前n项和Pn

查看答案和解析>>

科目:高中数学 来源:河东区二模 题型:解答题

已知有两个数列{an},{bn},它们的前n项和分别记为Sn,Tn,且数列{an}是各项均为正数的等比数列,Sm=26,前m项中数值最大的项的值为18,S2m=728,又Tn=2n2
(I)求数列{an},{bn}的通项公式.
(II)若数列{cn}满足cn=bnan,求数列{cn}的前n项和Pn

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省黄冈市麻城实验高中高三(上)12月月考数学试卷(理科)(解析版) 题型:选择题

已知函数,若数列{an}满足an=f(n)(n∈N+)且对任意的两个正整数m,n(m≠n)都有(m-n)(am-an)>0,那么实数a的取值范围是( )
A.[,3)
B.(,3)
C.(2,3)
D.(1,3)

查看答案和解析>>

同步练习册答案