精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2cos2x+2asinxcosx-1的图象关于直线x=
π
8
对称.
(Ⅰ)求a的值;
(Ⅱ)把函数y=f(x)的图象按向量
a
平移后与函数g(x)=
2
sin2x
-1的图象重合,求:
a
的坐标.
解(1):f(x)=cos2x+asin2x…(2分)
=
1+a2
sin(2x+?)…(4分)

f(
π
8
)=±
1+a2
=
2
2
(a+1)…(6分)

a=1…(8分)
另f(0)=f(
π
4
)?2=1+a∴a=1

(2)f(x)=
2
sin(2x+
π
4
)=
2
sin2(x+
π
8
)
-------g(x)=
2
sin2x+1

f(x)向右移动
π
8
个单位向上移动1个单位即可得g(x)图象
b
=(
π
8
,1)
….(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案