精英家教网 > 高中数学 > 题目详情
等差数列{an}中,a1+a4+a7=39,a3+a6+a9=27,则数列{an}前9项的和S9等于(  )
分析:已知两式相加结合等差数列的性质可得(a1+a9)=22,整体代入求和公式可得.
解答:解:∵a1+a4+a7=39,a3+a6+a9=27,
∴两式相加可得(a1+a9)+(a4+a6)+(a3+a7)=3(a1+a9)=39+27=66,解之可得(a1+a9)=22,
故S9=
9(a1+a9)
2
=
9×22
2
=99
故选A
点评:本题考查等差数列的性质和求和公式,得出(a1+a9)=22是解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}中,a1=-4,且a1、a3、a2成等比数列,使{an}的前n项和Sn<0时,n的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列﹛an﹜中,a3=5,a15=41,则公差d=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)项和S2n-1=38,则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,设S1=10,S2=20,则S10的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在等差数列{an}中,d=2,a15=-10,求a1及Sn
(2)在等比数列{an}中,a3=
3
2
S3=
9
2
,求a1及q.

查看答案和解析>>

同步练习册答案