精英家教网 > 高中数学 > 题目详情
2.已知a>0,a≠1,设p:函数y=loga(x+3)在(0,+∞)上单调递减,q:函数y=x2+(2a-3)x+1的图象与x轴交于不同的两点.如果p∨q真,p∧q假,求实数a的取值范围.

分析 分别求出p,q为真时的a的范围,根据p,q一真一假,得到不等式组,解出即可.

解答 解:由题意得
命题P真时0<a<1,
命题q真时由(2a-3)2-4>0解得a>$\frac{5}{2}$或a<$\frac{1}{2}$,
由p∨q真,p∧q 假,得,p,q一真一假 
即:$\left\{\begin{array}{l}{0<a<1}\\{\frac{1}{2}≤a≤\frac{5}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{a≥1}\\{a>\frac{5}{2}或a<\frac{1}{2}}\end{array}\right.$,
解得$\frac{1}{2}$≤a<1或a>$\frac{5}{2}$.

点评 本题考查了复合命题的判断,考查对数函数,二次函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知$\overrightarrow a=(\frac{x^2}{3},x),\overrightarrow b=(x,x-3)$,x∈[-4,4],$f(x)=\overrightarrow a•\overrightarrow b$
(1)求f(x) 的解析式.
(2)求f(x)的最小值,并求此时$\overrightarrow a$与$\overrightarrow b$的夹角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若不等式|mx3-lnx|≥1对?x∈(0,1]恒成立,则实数m的取值范围是[$\frac{1}{3}$e2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}是等差数列,a1=1,Sn为其前n项和,若a1,a2,a5成等比数列,则S8=8或64.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.对于给定数列{cn},如果存在实常数p,q使得cn+1=pcn+q对于任意n∈N*都成立,我们称数列{cn}是“Q类数列”.
(1)若an=3n,bn=3•5n,n∈N*,数列{an}、{bn}是否为“Q类数列”?若是,指出它对应的实常数p,q,若不是,请说明理由;
(2)证明:若数列{an}是“Q类数列”,则数列{an+an+1}也是“Q类数列”;
(3)若数列{an}满足a1=2,an+an+1=3t•2n(n∈N*),t为常数.求数列{an}前2015项的和.并判断{an}是否为“Q类数列”,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.sin(α-$\frac{π}{6}$)=$\frac{1}{4}$,则cos($\frac{π}{3}$-2α )=$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.y=sin($\frac{π}{6}$-2x)的单调增区间是:[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=f(x)(x∈R),满足f(x+1)=a-f(x),且当x∈[-2,0)时,f(x)=$\left\{\begin{array}{l}{x+2,-2≤x<-1}\\{2-x,-1≤x<0}\end{array}\right.$,则f(2012-$\sqrt{3}$)=2$-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=lnx-x2+ax(a∈R).
(1)当a=1时,求f(x)的最大值;
(2)求函数f(x)的单调区间;
(3)设g(x)=$\frac{ex}{{e}^{x}}$,若对于任意给定的x0∈(0,e],方程f(x)+1=g(x0)在(0,e]内有两个不同的实数根,求a的取值范围.

查看答案和解析>>

同步练习册答案