精英家教网 > 高中数学 > 题目详情
已知α=-1910°.
(1)把角α写成β+k•360°(k∈Z,0°≤β<360°)的形式,指出它是第几象限的角;
(2)求出θ的值,使θ与α的终边相同,且-720°≤θ<0°.
考点:终边相同的角
专题:三角函数的求值
分析:(1)利用终边相同的假的表示方法,把角α写成β+k•360°(k∈Z,0°≤β<360°)的形式,然后指出它是第几象限的角;
(2)利用终边相同的角的表示方法,通过k的取值,求出θ,且-720°≤θ<0°.
解答: 解:(1)∵-1910°=-6×360°+250°,180°<250°<270°,
∴把角α写成β+k•360°(k∈Z,0°≤β<360°)的形式为:-1910°=-6×360°+25°,
它是第三象限的角.
(2)∵θ与α的终边相同,
∴令θ=k•360°+250°,k∈Z,
k=-1,k=-2满足题意,
得到θ=-110°,-470°.
点评:本题考查终边相同角的表示方法,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=cosxsin2x,下列结论中不正确的是(  )
A、y=f(x)的图象关于(π,0)中心对称
B、y=f(x)的图象关于x=
π
2
对称
C、f(x)的最大值为
3
2
D、f(x)既是奇函数,又是周期函数

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥V-ABC中,VA=VB=AC=BC=2,AB=2
3
,VC=1;
(1)求二面角V-AB-C的平面角的度数;
(2)求三棱锥V-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinωx•cosωx+cos2ωx+1(ω>0)的最小正周期为π.
(1)求ω的值;
(2)求当x∈(0,
π
2
]时f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若存在实数对(a,b),使得等式f(a+x)•f(a-x)=b对定义域中的每一个x都成立,则称函数f(x)是“(a,b)型函数”.
(Ⅰ)判断函数f1(x)=x是否为“(a,b)型函数”,并说明理由;
(Ⅱ)若函数f2(x)=4x是“(a,b)型函数”,求出满足条件的一组实数对(a,b);,
(Ⅲ)已知函数g(x)是“(a,b)型函数”,对应的实数对(a,b)为(1,4).当x∈[0,1]时,g(x)=x2-m(x-1)+1(m>2),若当x∈[0,2]时,都有1≤g(x)≤4,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示).M为棱AC的中点.

(1)求证:AD⊥BC;
(2)当三棱锥A-BCD的体积最大时,求直线BM与面ACD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx满足f(2)=0,且方程f(x)=x有等根.
(1)求f(x)的解析式;
(2)求f(x)的值域;
(3)是否存在实数m、n(m<n),使f(x)的定义域和值域分别为[m,n]和[4m,4n].若存在,求出m、n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17;
(1)求f(x);
(2)求当x∈(-1,3]时,f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=kx与曲线y=lnx有公共点,则k的最大值为
 

查看答案和解析>>

同步练习册答案