精英家教网 > 高中数学 > 题目详情
已知直线y=kx与曲线y=lnx有公共点,则k的最大值为
 
考点:利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:根据导数的几何意义,即可求出k的最大值.
解答: 解:若k≤0,则满足条件,
当k>0,直线y=kx与y=lnx相切时,此时k取得最大值.
设切点为(a,b),
则函数的导数为f′(x)=
1
x

即切线斜率k=f′(a)=
1
a

则切线方程为y-b=
1
a
(x-a)=
1
a
x-1,
即y=
1
a
x+b-1=
1
a
x+lna-1,
∵y=kx是切线,
k=
1
a
lna-1=0
,解得a=e,k=
1
e

若直线y=kx与曲线y=lnx有公共点,
则k≤
1
e

即k的最大值为
1
e

故答案为:
1
e
点评:本题主要考查方程交点的应用,根据导数的几何意义转化为求函数的切线斜率是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知α=-1910°.
(1)把角α写成β+k•360°(k∈Z,0°≤β<360°)的形式,指出它是第几象限的角;
(2)求出θ的值,使θ与α的终边相同,且-720°≤θ<0°.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)写出两角差的余弦公式cos(α-β)=
 
,并加以证明;
(Ⅱ)并由此推导两角差的正弦公式sin(α-β)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,2),
b
=(-3,2),
当k=
 
时,(1)k
a
+
b
a
-3
b
垂直;
当k=
 
时,(2)k
a
+
b
a
-3
b
平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x,x∈[0,1]
1
x+1
-1,x∈(-1,0)
,若在区间(-1,1]内,g(x)=f(x)-mx-m有两个零点,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)是定义在[-1,1]上的偶函数,当x∈[0,1]时,f(x)=loga(2-x)(a>1).
(1)求函数的解析式;
(2)若f(x)的最大值为
1
2
,解关于x∈[-1,1]的不等式f(x)>
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程
x2
9-m
+
y2
4-m
=1,表示焦点在x轴上的双曲线,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin2ωx+
3
sinωxsin(ωx+
π
2
)+1(ω>0)的最小正周期为π.
(1)求ω;
(2)求f(x)的单调递增区间.
(3)求f(x)在区间[0,
2
3
π]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对某项活动中800名青年志愿者的年龄抽样调查后,得到如图所示的频率分布直方图,但年龄在25,30)的数据不慎丢失.依据此图,估计该项活动中年龄在25,30)的志愿者人数为
 

查看答案和解析>>

同步练习册答案