精英家教网 > 高中数学 > 题目详情
12.棱长为2的正方体的所有顶点都在球O的球面上,则球O的体积为4$\sqrt{3}$π.

分析 求出正方体的对角线的长度,就是外接球的直径,利用球的体积公式求解即可.

解答 解:因为一个正方体的顶点都在球面上,它的棱长为2,
所以正方体的外接球的直径就是正方体的对角线的长度:2$\sqrt{3}$.
所以球的半径为:$\sqrt{3}$.
所求球的体积为:$\frac{4π}{3}×(\sqrt{3})^{3}$=4$\sqrt{3}$π.
故答案为:4$\sqrt{3}$π.

点评 本题考查球的内接体,球的体积的求法,求出球的半径是解题的关键,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知随机变量ε的分布列如下表:
ε01234
p0.20.40.30.080.02
求其数学期望、方差和标准差.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在正四棱锥P-ABCD中,O为正方形ABCD的中心,$\overrightarrow{PE}$=λ$\overrightarrow{EO}$(2≤λ≤4),且平面ABE与直线PD交于F,$\overrightarrow{PF}$=f(λ)$\overrightarrow{PD}$,则(  )
A.f(λ)=$\frac{λ}{λ+2}$B.f(λ)=$\frac{2λ}{λ+6}$C.f(λ)=$\frac{3λ}{λ+7}$D.f(λ)=$\frac{4λ}{λ+9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,菱形ABCD的边长为4,∠BAD=$\frac{π}{3}$,AC∩BD=O.将菱形ABCD沿对角线AC折起,得到三棱锥B′-ACD,M为B′C的中点,DM=2$\sqrt{2}$.
(1)求证:OM∥平面AB′D;
(2)求三棱锥B′-DOM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-2ax+3.
(1)若f(1)=2,求实数a的值;
(2)当x∈R时,f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=3+2cosθ\\ y=-3+2sinθ\end{array}\right.$(θ为参数).
(Ⅰ)以原点为极点,x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程;
(Ⅱ)已知A(3,0),B(0,-3),在圆C上任意取一点M(x,y),求|MA|2+|MB|2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=sin({2x+\frac{π}{3}})$.
(1)若$x∈({-\frac{π}{6},0}]$,求$4f(x)+\frac{1}{f(x)}$的最小值,并确定此时x的值;
(2)若$a∈({-\frac{π}{2},0}),f({\frac{a}{2}+\frac{π}{3}})=\frac{{\sqrt{5}}}{5}$,求f(a)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设p:f(x)=1+ax,在(0,2]上f(x)≥0恒成立;q:函数g(x)=ax-$\frac{a}{x}$+2lnx在其定义域上存在极值.
(1)若p为真命题,求实数a的取值范围;
(2)如果“p或q”为真命题,“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下面说法正确(  )
①演绎推理是由一般到特殊的推理;
②演绎推理结论的正误与大前提、小前提和推理形式有关;
③演绎推理一般模式是“三段论”形式; 
④演绎推理得到的结论一定是正确的.
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案