精英家教网 > 高中数学 > 题目详情
已知函数f(x)为偶函数,且f(2+x)=f(2-x),当-2≤x≤0时f(x)=2*,又当n∈N×时an=f(n),则a2010=
1
4
1
4
分析:由已知函数f(x)为偶函数可得f(-x)=f(x)结合f(2+x)=f(2-x)可得f(4+x)=f(-x)=f(x),而-2≤x≤0时f(x)=2x,则a2010=f(2010)=f(4×502+2)=f(2)=f(-2),代入可求
解答:解:∵函数f(x)为偶函数
∴f(-x)=f(x)
∵f(2+x)=f(2-x)
∴f(4+x)=f(-x)=f(x)即函数的周期为4
∵-2≤x≤0时f(x)=2x
则a2010=f(2010)=f(4×502+2)=f(2)=f(-2)=
1
4

故答案为:
1
4
点评:本题主要考查了函数的奇偶性、函数的周期性及函数的解析式的求解,解题的关键是根据已知推导出函数的周期,把所求问题转化为已知可求
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+
ax
(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x+a|-|x-a|(a≠0),h(x)=
-x2+x(x>0)
x2+x(x≤0)
,则f(x),h(x)的奇偶性依次为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(1+x)-loga(1-x)(a>0且a≠1)
(1)讨论f(x)的奇偶性与单调性;
(2)若不等式|f(x)|<2的解集为{x|-
1
2
<x<
1
2
},求a
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•嘉定区一模)已知函数f(x)=|x|•(x-a).
(1)判断f(x)的奇偶性;
(2)设函数f(x)在区间[0,2]上的最小值为m(a),求m(a)的表达式;
(3)若a=4,证明:方程f(x)+
4x
=0有两个不同的正数解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x+3-x,g(x)=
x
2
+log3(1+3-x).
(1)用定义证明:函数g(x)在区间(-∞,0]上为减函数,在区间[0,+∞)上为增函数;
(2)判断函数g(x)的奇偶性,并证明你的结论;
(3)若g(x)≤
1
2
log3f(x)+a对一切实数x恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案