精英家教网 > 高中数学 > 题目详情
圆C:x2+y2-4=0被直线l:x-y+2=0截得的弦长为(  )
A、2
2
B、
2
C、
3
D、2
3
考点:直线与圆的位置关系
专题:计算题,直线与圆
分析:由圆的方程找出圆心坐标与半径r,利用点到直线的距离公式求出圆心到已知直线的距离d,利用垂径定理及勾股定理即可求出截得的弦长.
解答: 解:由圆x2+y2=4,得到圆心(0,0),r=2,
∵圆心(0,0)到直线x-y+2=0的距离d=
2
2
=
2

∴直线被圆截得的弦长为2
4-2
=2
2

故选:A.
点评:此题考查了直线与圆的位置关系,涉及的知识有:点到直线的距离公式,圆的标准方程,垂径定理,以及勾股定理,熟练运用垂径定理及勾股定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在正方形ABCD中,E、F分别在AB、BC边上,且BE=BF=
1
4
BC,将△AED和△CFD分别沿DE、DF折起,使A、C两点重合于点P,连接EF、PB.
(1)求证:PD⊥EF;
(2)求异面直线PB和EF所成角的大小;
(3)求证:点P在平面EFD上的射影不可能落在EF上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=kx+3与曲线x2+y2-2xcosα+2(1+sinα)(1-y)=0有且只有一个公共点,则实数k的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=2,任取a,b∈[-1,1],a+b≠0,都有
f(a)+f(b)
a+b
>0成立.
(1)证明函数f(x)在[-1,1]上是单调增函数.
(2)解不等式f(x)<f(x2).
(3)若对任意x∈[-1,1],函数f(x)≤2m2-2am+3对所有的a∈[0,
3
2
]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
x-y
3x
-
3y
-
x+y
3x
+
3y

查看答案和解析>>

科目:高中数学 来源: 题型:

设偶函数y=f(x),对任意实数x∈R都有f(x)=f(x+4),当x∈[0,4]时,函数f(x)=ax2+x+b2-b-
11
4
(a∈R,b∈R),且当x∈[0,1]时,f(x)<0恒成立,则b的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=4x的焦点为F,点P(x,y)为该抛物线上的动点,又点A(-1,0),则
|PF|
|PA|
的取值范围是(  )
A、[
2
2
,1]
B、[
1
2
,1]
C、[
2
2
2
]
D、[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-mlnx(m∈R,且m为常数).
(1)讨论函数f(x)的单调性;
(2)求函数f(x)在[1,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知n∈N*,则数列{
2n-1
2n
}的前n项和Sn=
 

查看答案和解析>>

同步练习册答案