精英家教网 > 高中数学 > 题目详情
3.已知f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,|MN|=5,则f(x)=2sin($\frac{π}{3}$x+$\frac{π}{6}$).

分析 由函数的图象的顶点坐标求出A,由特殊点的坐标求出φ的值,由周期以及|MN|=5求出ω,可得函数的解析式.

解答 解:根据f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象,可得A=2,
2sinφ=1,sinφ=$\frac{1}{2}$,∴φ=$\frac{π}{6}$,f(x)=2sin(ωx+$\frac{π}{6}$).
再根据|MN|=$\sqrt{{4}^{2}{+(\frac{1}{2}•\frac{2π}{ω})}^{2}}$=5,可得φ=$\frac{π}{3}$,
故f(x)=2sin($\frac{π}{3}$x+$\frac{π}{6}$),
故答案为:2sin($\frac{π}{3}$x+$\frac{π}{6}$).

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由特殊点的坐标求出φ的值,由周期以及|MN|=5求出ω,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图所示,△ABC内接于圆O,D是$\widehat{BAC}$的中点,∠BAC的平分线分别交BC和圆O于点E,F.
(Ⅰ)求证:BF是△ABE外接圆的切线;
(Ⅱ)若AB=3,AC=2,求DB2-DA2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知i是虚数单位,m,n∈R,且m(1+i)=(1+ni)i,则点(m,n)是在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知0<a<1,试比较a与a2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.分析身高与体重有关系,可以用(  )
A.误差分析B.回归分析C.独立性检验D.上述都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知sin$\frac{α}{2}$-cos$\frac{α}{2}$=$\frac{\sqrt{5}}{5}$,则sinα=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设p:对任意的x∈R,不等式x2-ax+a>0恒成立,q:关于x的不等式组$\left\{\begin{array}{l}{-1≤x≤a}\\{\frac{x+3}{x-2}≥0}\end{array}\right.$的解集非空,如果“p∧q”为假命题,“p∨q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,已知PA与⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且∠EDF=∠ECD.
(1)求证:△DEF∽△PEA;
(2)若EB=DE=6,EF=4,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一个圆台的上、下两个底面圆的半径分别为1和4,其母线长为3$\sqrt{2}$,则该圆台的体积为21π.

查看答案和解析>>

同步练习册答案