精英家教网 > 高中数学 > 题目详情
16.函数y=(3x-2)2的导数为(  )
A.2(3x-2)B.6xC.6x(3x-2)D.6(3x-2)

分析 根据导数的运算法则计算即可.

解答 解:y=(3x-2)2
则y′=2(3x-2)•(3x-2)′=6(3x-2),
故选:C.

点评 本题考查了导数的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有1700辆.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=sin2x,则$f'({\frac{π}{6}})$=(  )
A.1B.$\sqrt{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知定义在R上的奇函数f(x)满足f(4-x)=f(x),f(-1)=6,数列{an}的前n项和为Sn,且a1=-1,Sn=2an+n (n∈N),则f(a5)+f(a6)=-12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在三角形ABC中,∠A,∠B,∠C分别是三角形的内角.
(1)求证:tanA+tanB+tanC=tanA•tanB•tanC
(2)求证:tan$\frac{A}{2}$tan$\frac{B}{2}$+tan$\frac{B}{2}$tan$\frac{C}{2}$+tan$\frac{C}{2}$tan$\frac{A}{2}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=x2+aln(x+1)在(-1,+∞)上是增函数,则a的取值范围是(  )
A.[0,+∞)B.(0,+∞)C.($\frac{1}{2}$,+∞)D.[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.用数字1,2,3,4,5组成的没有重复数字的五位偶数的个数是(  )
A.120B.60C.50D.48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为了探究车流量与PM2.5的浓度是否相关,现采集到北方某城市2015年12月份星期一到星期日某一时间段车流量与PM2.5的数据如表:
时间星期一星期二星期三星期四星期五星期六星期日
车流量x(万辆)1234567
PM2.5的浓度y
(微克/立方米)
27313541495662
(1)在表中画出车流量与PM2.5浓度的散点图.
(2)求y关于x的线性回归方程;
(3)①利用所求回归方程,预测该市车流量为8万辆时,PM2.5的浓度;
②规定当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良,为使该市某日空气质量等级为优或良,则应控制当天车流量在多少万辆以内(结果以万辆为单位,保留整数)
参考公式:回归直线的方程是$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ln(ax+1)+x3-x2-ax(a∈R).
(1)若x=$\frac{2}{3}$为函数f(x)的极值点,求实数a的值;
(2)若a=-1时,方程f(1-x)-(1-x)3=b有实数根,求实数b的取值范围.

查看答案和解析>>

同步练习册答案